• Title/Summary/Keyword: High-energy milling

Search Result 297, Processing Time 0.032 seconds

Optimization of Barium Titanate Slip for Tape Casting Using Design of Experiments

  • Kwon, Sung-Wook;Darsono, Nono;Yoon, Dang-Hyok
    • Journal of the Korean Ceramic Society
    • /
    • v.43 no.9 s.292
    • /
    • pp.519-526
    • /
    • 2006
  • A full-factorial design of experiments with three input factors and two levels for each factor including center points was utilized for the preparation and characterization of twelve types of $BaTiO_3$ slips for tape casting. Ceramic powders with different particle sizes, different milling methods such as high energy milling and conventional ball milling, and two types of dispersant with different polymeric species were chosen as input factors in order to investigate their effects on slip and on green tape properties. Tape casting, a small rectangular-shaped K-square preparation, characterization and quantitative data analysis using statistical software were followed. Ceramic powder was the most significant among three input factors for the output responses of slip viscosity and green tape density, showing more favorable results with large particles than with very fine ones. In addition, high energy milling for only 30 min was more efficient than 24h of conventional ball milling in terms of powder dispersion and milling. The optimum condition based on the experimental results was a slip exposed to high energy milling with large ceramic particles along with a methylethyl acetate dispersant.

The Effect of Ball-milling Energy on Combustion Synthesis Coating of Cu-Al-Ni Based Intermetallics (Cu-Al-Ni계 금속간화합물의 연소합성 Coating에 미치는 Ball Mill처리의 영향)

  • Lee, Han-Young
    • Tribology and Lubricants
    • /
    • v.27 no.1
    • /
    • pp.1-6
    • /
    • 2011
  • The possibility of Cu-Al-Ni intermetallic coating on the mild steel through the combustion synthesis has been investigated. In particular, the effect of the ball milling energy on the microstructure of the coating layer was examined to obtain the best coating condition. Experimental results show that Cu-Al-Ni powder compact was explosively synthesized and successfully coated with the steel matrix. It was revealed that the formation of $Cu_9Al_4$ intermetallic decreased with increase in the ball milling energy. This result supports that the high energy ball milling would be effective for obtaining the most suitable microstructure for Cu-Al-Ni coating layer. However, the excessive ball milling energy seems to decrease the bonding strength between the coating layer and the matrix.

Synthesis of Nanocrystalline BaTiO3 Powder by the Combination of High Energy Ball Milling of BaCO3-TiO2 Mixture and Solid-State Reaction (고에너지 볼밀링된 BaCO3와 TiO2 혼합분말의 고상반응에 의한 나노결정 BaTiO3 분말 합성)

  • Ryu, Sung-Soo
    • Journal of Powder Materials
    • /
    • v.19 no.4
    • /
    • pp.310-316
    • /
    • 2012
  • Nanocrystalline $BaTiO_3$ powder could be synthesized by solid-state reaction using the mixture which was prepared by a high energy milling process in a bead mill for $BaCO_3$ and nanocrystalline $TiO_2$ powders mixture. Effect of the milling time on the powder characteristic of the synthesized $BaTiO_3$ powder was investigated. Nanocrystalline $BaTiO_3$ with a particle size of 50 nm was obtained at $800^{\circ}C$. High tetragonal $BaTiO_3$ powder with a tetragonality(=c/a) of 1.009 and a specific surface area of $7.6m^2/g$ was acquired after heat-treatment at $950^{\circ}C$ for 2 h. High energy ball milling was effective in decreasing the reaction temperature and increasing the tetragonality.

Recycling of EAF Dust by Semi-continuous High Kinetic Process

  • Zoz, H.;Kaupp, G.;Ren, H.;Goepel, K.;Naimi-Jamal, M. R.
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09a
    • /
    • pp.491-492
    • /
    • 2006
  • The horizontal high energy rotor ball mill ($Simoloyer^{(R)}$) is used to break and activate dry solids. It is used for dry-milling and in the vertical mount for wet-milling in leaching processes. Technical electric arc furnace (EAF) dust with high contents of zinc oxide, zinc ferrite and magnetite is efficiently separated by ambient temperature leaching. The process shows promise for industrial application

  • PDF

Thermal Stability and Weight Reduction of Al0.75V2.82CrZr Refractory High Entropy Alloy Prepared Via Mechanical Alloying (기계적 합금화를 이용한 Al0.75V2.82CrZr 내화 고엔트로피 합금의 경량화 및 고온 열안정성 연구)

  • Minsu Kim;Hansung Lee;Byungmin Ahn
    • Journal of Powder Materials
    • /
    • v.30 no.6
    • /
    • pp.478-483
    • /
    • 2023
  • High-entropy alloys (HEAs) are characterized by having five or more main elements and forming simple solids without forming intermetallic compounds, owing to the high entropy effect. HEAs with these characteristics are being researched as structural materials for extreme environments. Conventional refractory alloys have excellent high-temperature strength and stability; however, problems occur when they are used extensively in a high-temperature environment, leading to reduced fatigue properties due to oxidation or a limited service life. In contrast, refractory entropy alloys, which provide refractory properties to entropy alloys, can address these issues and improve the high-temperature stability of the alloy through phase control when designed based on existing refractory alloy elements. Refractory high-entropy alloys require sufficient milling time while in the process of mechanical alloying because of the brittleness of the added elements. Consequently, the high-energy milling process must be optimized because of the possibility of contamination of the alloyed powder during prolonged milling. In this study, we investigated the high-temperature oxidation behavior of refractory high-entropy alloys while optimizing the milling time.

Preparation and Characterization of LaAlO3 Ceramics from High Energy Ball Milling Powders (고에너지 볼 밀에 의한 LaAlO3 세라믹스의 제조와 특성)

  • 최상수;서병준;여기호;정수태
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.17 no.1
    • /
    • pp.39-45
    • /
    • 2004
  • Fine LaAlO$_3$ powders wore successfully synthesized from La$_2$O$_3$ and ${\gamma}$ $Al_2$O$_3$ powders milling for 10∼50 hours via the high energy milling technique (mechanochemical method) in room temperature and air. The particle size of LaAlO$_3$ powder were estimated from XRD patterns and SEM images to be 160∼180 nm. The LaAlO$_3$ ceramics arc derived for the synthesized powders (milling for 10, 30 and 50 hours) by sintering at 140$0^{\circ}C$ and 150$0^{\circ}C$. The micrographs of grains showed an agglomeration and the degree of agglomeration increased with the milling time. The LaAlO$_3$ made from synthesized powders milling for 50 hours can be sintered to 99.5% of theoretical density at 150$0^{\circ}C$ for 1 hour. These ceramics exhibits a dielectric constant of 20, a dielectric loss of 0.0003 and a temperature coefficient of capacitance of 15 ppm/$^{\circ}C$ at 1 MHz.

Effect of Process Parameters on Microstructure and Magnetic Properties of Sm-Co Alloy Powder Prepared by High Energy Ball Milling (고에너지 볼밀링된 Sm-Co 합금 분말의 미세조직 및 자성특성에 미치는 공정변수의 영향)

  • Kim, Bo-Sik;Chang, Si-Young
    • Journal of Powder Materials
    • /
    • v.17 no.2
    • /
    • pp.130-135
    • /
    • 2010
  • Sm-16.7wt%Co alloy powders were prepared by high energy ball milling under the conditions of various milling time and the content of process control agent (PCA), and their microstructure and magnetic properties were investigated to establish optimum processing conditions. The initial powders employed showed irregular shape and had a size ranging from 5 to $110\;{\mu}m$. After milling for 5 h, the shape of powders changed to round shape and their mean powder size was approximately $5\;{\mu}m$, which consisted of the agglomerated nano-sized particles with 15 nm in diameter. The coercivity was reduced with increasing the milling time, whereas the saturation magnetization increased. As the content of PCA increased, the powder size minutely decreased to approximately $7\;{\mu}m$ at the PCA content of 10 wt%. The XRD patterns showed that the main diffraction peaks disappeared apparently after milling, indicating the formation of amorphous structure. The measured values of coercivity were almost unchanged with increasing the content of PCA.

Effect of high energy ball milling on the structure of iron - multiwall carbon nanotubes (MWCNT) composite

  • Kumar, Akshay;Pandel, U.;Banerjee, M.K.
    • Advances in materials Research
    • /
    • v.6 no.3
    • /
    • pp.245-255
    • /
    • 2017
  • High energy ball milling is employed to produce iron matrix- multiwall carbon nanotube (MWCNT) reinforced composite. The damage caused to MWCNT due to harsh ball milling condition and its influence on interfacial bonding is studied. Different amount of MWCNT is used to find the optimal percentage of MWCNT for avoidance of the formation of chemical reaction product at the matrix - reinforcement interface. Effect of process control agent is assessed by the use of different materials for the purpose. It is observed that ethanol as a process control agent (PCA) causes degradation of MWCNT reinforcements after milling for two hours whereas solid stearic acid used as process control agent, allows satisfactory conservation of MWCNT structure. It is further noted that at a high MWCNT content (~ 2wt.%), high energy ball milling leads to reaction of iron and carbon and forms iron carbide (cementite) at the iron-MWCNT interface. At low percentage of MWCNT, dissolution of carbon in iron takes place and the amount of reinforcement in iron matrix composite becomes negligibly small. However, under the present ball milling condition (ball to metal ratio~ 6:1 and 200 rpm vial speed) iron-1wt.% MWCNT composite of good interfacial bonding can retain the tubular structure of reinforcing MWCNT.