• 제목/요약/키워드: High-efficiency high-power boost converter

검색결과 273건 처리시간 0.023초

A Study on Isolated DCM Converter for High Efficiency and High Power Factor

  • Kwak, Dong-Kurl
    • Journal of Electrical Engineering and Technology
    • /
    • 제5권3호
    • /
    • pp.477-483
    • /
    • 2010
  • This paper is studied on a novel buck-boost isolated converter for high efficiency and high power factor. The switching devices in the proposed converter are operated by soft switching technique using a new quasi-resonant circuit, and are driven with discontinuous conduction mode (DCM) according to pulse width modulation (PWM). The quasi-resonant circuit makes use of a step up-down inductor and a loss-less snubber capacitor. The proposed converter with DCM also simplifies the requirement of control circuit and reduces a number of control components. The input ac current waveform in the proposed converter becomes a quasi sinusoidal waveform in proportion to the magnitude of input ac voltage under constant switching frequency. As a result, it is obtained by the proposed converter that the switching power losses are low, the efficiency of the converter is high, and the input power factor is nearly unity. The validity of analytical results is confirmed by some simulation results on computer and experimental results.

Power Loss Analysis of Interleaved Soft Switching Boost Converter for Single-Phase PV-PCS

  • Kim, Jae-Hyung;Jung, Yong-Chae;Lee, Su-Won;Lee, Tae-Won;Won, Chung-Yuen
    • Journal of Power Electronics
    • /
    • 제10권4호
    • /
    • pp.335-341
    • /
    • 2010
  • In this paper, an interleaved soft switching boost converter for a Photovoltaic Power Conditioning System (PV-PCS) with high efficiency is proposed. In order to raise the efficiency of the proposed converter, a 2-phase interleaved boost converter integrated with soft switching cells is used. All of the switching devices in the proposed converter achieve zero current switching (ZCS) or zero voltage switching (ZVS). Thus, the proposed circuit has a high efficiency characteristic due to low switching losses. To analyze the power losses of the proposed converter, two experimental sets have been built. One consists of normal devices (MOSFETs, Fast Recovery (FR) diodes) and the other consists of advanced power devices (CoolMOSs, SiC-Schottky Barrier Diodes (SBDs)). To verify the validity of the proposed topology, theoretical analysis and experimental results are presented.

간단한 클램프회로를 이용한 고효율 결합인덕터 부스트 직류-직류 변환기 (High Efficiency Coupled Inductor Boost DC-DC Converter using a Simple Clamp Circuit)

  • 유두희;정강률
    • 조명전기설비학회논문지
    • /
    • 제26권3호
    • /
    • pp.31-39
    • /
    • 2012
  • This paper presents a high efficiency coupled inductor boost DC-DC converter that uses a simple clamp circuit and the coupled inductor and thus overcomes output voltage limit of the conventional boost converter. The proposed converter solves problems of voltage stress of the power semiconductor switch and reverse recovery of the output diode using a simple clamp circuit composed of a diode and a capacitor, and thus the converter improves its total efficiency. In this paper, the operational principle of the proposed converter is explained by each mode and then a design example for the prototype converter based on the explanation is shown. And good performance of the proposed converter is verified through experimental results of the prototype converter that is implemented with the designed circuit parameters.

A New Three Winding Coupled Inductor-Assisted High Frequency Boost Chopper Type DC-DC Power Converter with a High Voltage Conversion Ratio

  • Ahmed Tarek;Nagai Shinichiro;Hiraki Eiji;Nakaoka Mutsuo
    • Journal of Power Electronics
    • /
    • 제5권2호
    • /
    • pp.99-103
    • /
    • 2005
  • In this paper, a novel circuit topology of a three-winding coupling inductor-assisting a high-frequency PWM boost chopper type DC-DC power converter with a high boost voltage conversion ratio and low switch voltage stress is proposed for the new energy interfaced DC power conditioner in solar photovoltaic and fuel cell generation systems. The operating principle in a steady state is described by using its equivalent circuits under the practical condition of energy processing of a lossless capacitive snubber. The newly-proposed power MOSFET boost chopper type DC-DC power converter with the three-winding coupled inductor type transformer and a single lossless capacitor snubber is built and tested for an output power of 500W. Utilizing the lower voltage and internal resistance power MOSFET switch in the proposed PWM boost chopper type DC-DC power converter can reduce the conduction losses of the active power switch compared to the conventional model. Therefore, the total actual power conversion efficiency under a condition of the nominal rated output power is estimated to be 81.1 %, which is 3.7% higher than the conventional PWM boost chopper DC power conversion circuit topology.

GaN, Cool MOS, SiC MOSFET을 이용한 DC-DC 승압 컨버터의 효율 특성 (Efficiency Characteristics of DC-DC Boost Converter Using GaN, Cool MOS, and SiC MOSFET)

  • 김정규;양오
    • 반도체디스플레이기술학회지
    • /
    • 제16권2호
    • /
    • pp.49-54
    • /
    • 2017
  • In this paper, recent researches on new and renewable energy have been conducted due to problems such as energy exhaustion and environmental pollution, and new researches on high efficiency and high speed switching are needed. Therefore, we compared the efficiency by using high speed switching devices instead of IGBT which can't be used in high speed switching. The experiment was performed theoretically by applying the same parameters of the high speed switching devices which are the Cool MOS of Infineon Co., SiC C3M of Cree, and GaN FET device of Transform, by implementing the DC-DC boost converter and measuring the actual efficiency for output power and frequency. As a result, the GaN FET showed good efficiency at all switching frequency and output power.

  • PDF

High Efficiency High-Step-up Single-ended DC-DC Converter with Small Output Voltage Ripple

  • Kim, Do-Hyun;Kim, Hyun-Woo;Park, Joung-Hu;Jeon, Hee-Jong
    • Journal of Power Electronics
    • /
    • 제15권6호
    • /
    • pp.1468-1479
    • /
    • 2015
  • Renewable energy resources such as wind and photovoltaic power generation systems demand a high step-up DC-DC converters to convert the low voltage to commercial grid voltage. However, the high step-up converter using a transformer has limitations of high voltage stresses of switches and diodes when the transformer winding ratio increases. Accordingly, conventional studies have been applied to series-connect multioutput converters such as forward-flyback and switched-capacitor flyback to reduce the transformer winding ratio. This paper proposes new single-ended converter topologies of an isolation type and a non-isolation type to improve power efficiency, cost-effectiveness, and output ripple. The first proposal is an isolation-type charge-pump switched-capacitor flyback converter that includes an extreme-ratio isolation switched-capacitor cell with a chargepump circuit. It reduces the transformer winding number and the output ripple, and further improves power efficiency without any cost increase. The next proposal is a non-isolation charge-pump switched-capacitor-flyback tapped-inductor boost converter, which adds a charge-pump-connected flyback circuit to the conventional switched-capacitor boost converter to improve the power efficiency and to reduce the efficiency degradation from the input variation. In this paper, the operation principle of the proposed scheme is presented with the experimental results of the 100 W DC-DC converter for verification.

스프트 스위칭 보조 스위치를 가지는 ZVT-PWM 부스트 컨버터 (A High Performance ZVT-PWM Boost Rectifier with Soft Switched Auxiliary Switch)

  • 김윤호;김윤복;정재웅
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 1998년도 전력전자학술대회 논문집
    • /
    • pp.265-268
    • /
    • 1998
  • This paper presents a soft-switching average current control PWM high power factor boost converter. Conventional boost ZVT-PWM converter has a disadvantage of hard-switching for auxiliary switch at turn-off. A soft switched auxiliary switch is proposed to achieve a high performance ZVT-PWM boost rectifier. The simulation and experimental results show that soft switching operation can be maintained for wide line and load range, which in turn improves the converter performance in terms of efficiency, switching noise and circuit reliability.

  • PDF

High Efficiency Soft-Switching Boost Converter Using a Single Switch

  • Kim, Jun-Ho;Jung, Doo-Yong;Park, Sang-Hoon;Won, Chung-Yuen;Jung, Yong-Chae;Lee, Su-Won
    • Journal of Power Electronics
    • /
    • 제9권6호
    • /
    • pp.929-939
    • /
    • 2009
  • This paper presents a new soft-switching boost converter based on the LC resonance and passive clamping technique without additional active switches. The circuit achieves high efficiency and low voltage stress by adopting a soft switching method using LC resonance. This paper gives a mathematical analysis of each mode and a detailed design procedure of the proposed boost converter. First of all, the operational principles are verified through simulation results. Then, according to the design procedure, we designed and built a 1.5[kW] prototype soft switching boost converter. Through the experimental results, we demonstrated the validity and usefulness of the proposed boost converter.

Single-Ended High-Efficiency Step-up Converter Using the Isolated Switched-Capacitor Cell

  • Kim, Do-Hyun;Jang, Jong-Ho;Park, Joung-Hu;Kim, Jung-Won
    • Journal of Power Electronics
    • /
    • 제13권5호
    • /
    • pp.766-778
    • /
    • 2013
  • The depletion of natural resources and renewable energy sources, such as photovoltaic (PV) energy, has been highlighted for global energy solution. The PV power control unit in the PV power-generation technology requires a high step-up DC-DC converter. The conventional step-up DC-DC converter has low efficiency and limited step-up ratio. To overcome these problems, a novel high step-up DC-DC converter using an isolated switched capacitor cell is proposed. The step-up converter uses the proposed transformer and employs the switched-capacitor cell to enable integration with the boost inductor. The output of the boost converter and isolated switched-capacitor cell are connected in series to obtain high step-up with low turn-on ratio. A hardware prototype with 30 V to 40 V input voltage and 340 V output voltage is implemented to verify the performance of the proposed converter. As an extended version, another novel high step-up isolated switched-capacitor single-ended DC-DC converter integrated with a tapped-inductor (TI) boost converter is proposed. The TI boost converter and isolated-switched-capacitor outputs are connected in series to achieve high step-up. All magnetic components are integrated in a single magnetic core to lower costs. A prototype hardware with 20 V to 40 V input voltage, 340 V output voltage, and 100 W output power is implemented to verify the performance of the proposed converter.

Boost-Flyback topology를 이용한 1KW급 Converter (1KW converter using boost-flyback topology)

  • 황선남;채형준;임성규;이준영
    • 반도체디스플레이기술학회지
    • /
    • 제7권2호
    • /
    • pp.7-12
    • /
    • 2008
  • This paper proposed DC-DC converter for fuel cell that have high voltage and high current output characteristics. It is required step-up converter to use by general power supply, because the general rated voltage of fuel cell is low about 20$\sim$50V. The miniaturization of converter and DC link voltage can be controlled and high quality of output voltage uses mainly DC-DC converter. The boost converter and buck-boost converter do not get high boosting ratio. It is that proposed boost-flyback converter. Through simulation and an experiment, it could get high boosting ratio and efficiency more than 90%.

  • PDF