• 제목/요약/키워드: High-Temperature Superconductor

검색결과 389건 처리시간 0.022초

Feasible waste liquid treatment from electroless nickel-plating by intense magnetic field of HTS bulk magnets

  • Oka, T.;Furusawa, M.;Sudo, K.;Dadiel, L.;Sakai, N.;Seki, H.;Miryala, M.;Murakami, M.;Nakano, T.;Ooizumi, M.;Yokoyama, K.;Tsujimura, M.
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제23권3호
    • /
    • pp.37-40
    • /
    • 2021
  • Nickel (Ni) is a kind of the rare earth resources. Since Ni-containing waste is drained after several plating operations in the factories, the effective recycling technique has been expected to be introduced. An actual magnetic separation technique using HTS bulk magnet generating the strong magnetic field has succeeded in collecting the paramagnetic slurry containing Ni-sulphate coarse crystals which were fabricated from the Ni-plating waste. The Ni compound in the collected slurry was identified as NiSO4/6H2O, showing slight differences in the particle size and magnetic susceptibility between the samples attracted and not-attract to the magnetic pole. This preferential extraction suggests us a novel recycling method of Ni resource because the compound is capable of recycling back to the plating processes as a raw material.

Growth optimization of CeCoIn5 thin films via pulsed laser deposition

  • Rivasto, Elmeri;Kim, Jihyun;Tien, Le Minh;Kang, Ji-Hoon;Park, Sungmin;Choi, Woo Seok;Kang, Won Nam;Park, Tuson
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제23권3호
    • /
    • pp.41-44
    • /
    • 2021
  • We developed an optimization process of the pulsed laser deposition method to grow epitaxial CeCoIn5 thin films on MgF2 substrates. The effects of different deposition parameters on film growth were extensively studied by analyzing the measured X-ray diffraction patterns. All the deposited films contained small amounts of CeIn3 impurity phase and misoriented CeCoIn5, for which the c-axis of the unit cell is perpendicular to the normal vector of the substrate surface. The deposition temperature, target composition, laser energy density, and repetition rate were found effective in the formation of (00l)-oriented CeCoIn5 as well as the undesired phases such as CeIn3, misoriented CeCoIn5 along the (112) and (h00). Our results provide a set of deposition parameters that produce high-quality epitaxial CeCoIn5 thin films with sufficiently low amounts of impurity phases and can serve as a reference for future studies to optimize the deposition process further.

Development and performance evaluation of a cryogenic blower for HTS magnets

  • Kwon, Yonghyun;Mun, Jeongmin;Lee, Jaehwan;Seo, Geonghang;Kim, Dongmin;Lee, Changhyeong;Sim, Kideok;Kim, Seokho
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제22권4호
    • /
    • pp.57-61
    • /
    • 2020
  • Cooling by gas helium circulation can be used for various HTS (high temperature superconductor) magnets operating at 20~40 K, and a cryogenic blower is an essential device for circulating gas helium in the cooling system. The performance of the cryogenic blower is determined by various design parameters such as the impeller diameter, the blade number, the vane angle, the volute cross-sectional area, and the rotating speed. The trailing edge angle and the height of impeller vane are also key design factors in determining the blower performance. This study describes the design, fabrication and performance evaluation of cryogenic blower to produce a flow rate of 30 g/s at 5 bar, 35 K gas helium. The impeller shape is designed using a specific speed/specific diameter diagram and CFD analysis. After the fabrication of the cryogenic blower, a test equipment is also developed using a GM cryocooler. The measured flow rates and the pressure differences are compared with the design values at various rotating speeds and the results show a good agreement. Isentropic efficiency is also evaluated using the measured pressures and temperatures.

Coated Conductor를 이용한 소용량 영구전류스위치 시스템의 특성 해석 (Characteristics Analysis of a Small Scale Persistent Current Switch System by using Coated Conductor)

  • 김영식;윤용수;양성은;박동근;안민철;고태국
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제9권1호
    • /
    • pp.47-52
    • /
    • 2007
  • This paper presents characteristics analysis of persistent current switch(PCS) system on a small scale by using YBCO coated conductor(CC). A high temperature superconductor(HTS) PCS system mainly consists of a PCS, a HTS magnet load and a magnet power supply(MPS). To design the optimal heater triggering switch. the three-dimensional heat conduction model was analyzed by finite element method(FEM). The electrical equivalent model considering the n-value of CC was applied to analyze current decay during persistent current mode. In the experiment and simulation, the heater was applied with a current of 0.43A and the current was ramped up to 10A and 20A with 0.2A/s. Finally, experimental results of the HTS PCS system have been compared with the theoretical results. It has been concluded that flux creep can not influence the results because the operating current was 40% of critical current and optimal sequential operation of the PCS system is indispensable to enhance its performance.

고온 초전도 에너지 저장장치용 극저온 냉매의 절연 특성 연구 (A Study on the Insulation Properties of Cryogen for the HTS SMES)

  • 최재형;최진욱;이해근;송정빈;김해종;성기철;김상현
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제11권1호
    • /
    • pp.16-19
    • /
    • 2009
  • Recently, for improvement of the magnetic field of high temperature superconductor (HTS) apparatus, many studies investigating on operating in the range of $20{\sim}65K$ with liquid helium or the conducting method using cryocooler is actively reviewed. Also, the cooling method using solid nitrogen as cryogen is being suggested. Since the nitrogen has very large specific heat in solid state, it is expected that it can enable long time operation without a continuous supply of cooling energy. However, there is still insufficient data on the characteristics of solid nitrogen such as thermodynamic properties and liquid-solid phase change. Especially, there was almost no study done on the electrical insulation properties of solid nitrogen so far. In this study, solid nitrogen to find the electrical characteristics was made by using cryocooler and cryostat, and investigated the flashover discharge and breakdown. The results of this study will be useful as a basic data for electrical insulation design of the HTS system using solid nitrogen as cryogen.

초전도 전력케이블의 열 등가 회로에 관한 연구 (A Study on the Equivalent Thermal Circuit for HTS Power Cable)

  • 이수길;이흥재
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제12권1호
    • /
    • pp.61-65
    • /
    • 2010
  • To develop the thermal analysis method for the thermal behavior of HTS power cable system, cooled with sub-cooled liquid nitrogen, new thermo dynamic model for HTS cable system is introduced. The introduced thermal model is mainly modified from the thermal circuit following to IEC60287 for underground power cable systems such as XLPE or paper wrapped insulation cables. The thermal circuits for HTS cables are similar to the forced cooled underground cable system but the major thermal parameters and the configuration is apparently different to the normal cable systems so there has been no proposals in this field of analysing method. In this paper, 154kV HTS cable system has been introduced as an aspects of thermal models and a thermal circuit is proposed for the fundamentals on the dynamic rating systems for the HTS cable system. By using the thermal circuit developed in this paper, the optimal controls on the sub-cooling system's capacity become possible and it is expected to make the efficiency of HTS cable higher than conventional static controls.

22.9kV 고온 초전도 케이블.초전도 한류기 스마트 그리드 적용을 위한 초전도 시범사업 (Introduction of The First Demonstration Project for the Application of HTS Cable and SFCL to Real Smart Grid in South Korea)

  • 양병모;박진우;이승렬
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제12권3호
    • /
    • pp.34-38
    • /
    • 2010
  • Until now some countries including South Korea have made big progress and many efforts in the development of high temperature superconductor (HTS) power equipments. Especially, HTS Cable and superconducting fault current limiter (SFCL) are the strongest candidates among them from the viewpoint of applying to real grid. In South Korea, HTS cable and SFCL have been installed in test fields and tested successfully at Gochang PT Center of KEPCO. In order to meet practical requirements and be feasible in real grid, a demonstration project for HTS cable and SFCL systems, called GENI(green superconducting electric power network at Icheon substation) project, has been initiated to install 23kV HTS cable and SFCL systems in a utility network in South Korea since 2008. Namely, it says the first demonstration project for the application HTS system to real smart grid in South Korea. This paper presents the design and the application plan of the 22.9kV HTS cable and SFCL in 154kV Icheon substation in South Korea with the viewpoint of applying in Smat Grid.

Development of an Optimization Program for a 2G HTS Conductor Design Process

  • Kim, K.L.;Hwang, S.J.;Hahn, S.;Moon, S.H.;Lee, H.G.
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제12권4호
    • /
    • pp.8-12
    • /
    • 2010
  • The properties of the conductor.mechanical, thermal, and electrical-are the key information in the design and optimization of superconducting coils. Particularly, in devices using second generation (2G) high temperature superconductors (HTS), whose base materials (for example, the substrate or stabilizer) and dimensions are adjustable, a design process for conductor optimization is one of the most important factors to enhance the electrical and thermal performance of the superconducting system while reducing the cost of the conductor. Recently, we developed a numerical program that can be used for 2G HTS conductor optimization. Focusing on the five major properties, viz. the electrical resistivity, heat capacity, thermal conductivity, Z-value, and enthalpy, the program includes an electronic database of the major base materials and calculates the equivalent properties of the 2G HTS conductors using the dimensions of the base materials as the input values. In this study, the developed program is introduced and its validity is verified by comparing the experimental and simulated results obtained with several 2G HTS conductors.

Nonlocality effects of MgB2 superconductor

  • Jeong Hun Yang;Jong Su You;Soo Kyung Lee;Kyu Jeong Song
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제25권3호
    • /
    • pp.22-27
    • /
    • 2023
  • Magnetic properties of MgB2 superconducting powder were investigated. M(H), the magnetic field H dependence of magnetization M, was measured and analyzed using a PPMS instrument. The MgB2 superconducting powder showed high critical current density Jc > ~ 107 A/cm2 and clean limit superconducting properties. The equilibrium magnetization Meq properties of MgB2 powders exhibiting various superconducting properties were studied. We find that the equilibrium magnetization Meq(H) properties of MgB2 powders showing conventional BCS properties deviate from the predictions of the standard local-London theory at temperatures below T = 19 K and are in good agreement with the generalized nonlocal-London theory. Nonlocal-London analysis was used to determine and analyze the nonlocal parameters. The temperature dependence of the London penetration depth values λ(T) was studied.

Changes in superconducting properties of Nb films irradiated with Kr ion beam

  • Minju Kim;Joonyoung Choi;Chang-Duk Kim;Younjung Jo
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제26권1호
    • /
    • pp.5-9
    • /
    • 2024
  • This study investigated the effect of Kr ion beam irradiation on the superconducting properties of Nb thin films, which are known for their high superconducting transition temperature (Tc) at ambient pressure among single elements. Using the Stopping and Range of Ions in Matter (SRIM) program, we analyzed the distribution of Kr ions and displacement per atom (DPA) after irradiation, finding a direct correlation between irradiation amount and DPA. In samples with stronger beam energy, deeper ion penetration, fewer ions remained, and higher DPA values were observed. X-ray diffraction (XRD) revealed that the Nb (110) peak at 38.5° weakened and shifted with increasing irradiation. Tc decreased in all samples after irradiation, more significantly in those with higher beam energy. Irradiation raised resistivity of the film and lowered the residual-resistivity ratio (RRR). AC susceptibility measurements were also consistent with these findings. This research could potentially lead to more efficient and powerful superconducting devices and a better understanding of superconducting materials.