DOI QR코드

DOI QR Code

Growth optimization of CeCoIn5 thin films via pulsed laser deposition

  • Rivasto, Elmeri (Wihuri Physical Laboratory, Department of Physics and Astronomy, University of Turku) ;
  • Kim, Jihyun (Institute of Basic Science, Sungkyunkwan University) ;
  • Tien, Le Minh (Department of Physics, Sungkyunkwan University) ;
  • Kang, Ji-Hoon (Department of Physics, Sungkyunkwan University) ;
  • Park, Sungmin (Department of Physics, Sungkyunkwan University) ;
  • Choi, Woo Seok (Department of Physics, Sungkyunkwan University) ;
  • Kang, Won Nam (Department of Physics, Sungkyunkwan University) ;
  • Park, Tuson (Department of Physics, Sungkyunkwan University)
  • Received : 2021.06.21
  • Accepted : 2021.09.17
  • Published : 2021.09.30

Abstract

We developed an optimization process of the pulsed laser deposition method to grow epitaxial CeCoIn5 thin films on MgF2 substrates. The effects of different deposition parameters on film growth were extensively studied by analyzing the measured X-ray diffraction patterns. All the deposited films contained small amounts of CeIn3 impurity phase and misoriented CeCoIn5, for which the c-axis of the unit cell is perpendicular to the normal vector of the substrate surface. The deposition temperature, target composition, laser energy density, and repetition rate were found effective in the formation of (00l)-oriented CeCoIn5 as well as the undesired phases such as CeIn3, misoriented CeCoIn5 along the (112) and (h00). Our results provide a set of deposition parameters that produce high-quality epitaxial CeCoIn5 thin films with sufficiently low amounts of impurity phases and can serve as a reference for future studies to optimize the deposition process further.

Keywords

Acknowledgement

This work was supported by the National Research Foundation (NRF) of Korea through a grant funded by the Korean Ministry of Science and ICT (No. 2012R1A3A2048816, 2021R1A2C2011340 (W.S.C.)). E. R. thanks the University of Turku Graduate School (UTUGS), the Magnus-Ehrnrooth foundation, and the Turku University Foundation for financial support. Sungmin Park was supported by Basic Science Research Program through the National Research Foundation of Korea(NRF) funded by the Ministry of Education (2018R1D1A1B07051040).

References

  1. S. Doniach, "The Kondo lattice and weak antiferromagnetism," Physica B+C, vol. 91, pp. 231-234, 1977. https://doi.org/10.1016/0378-4363(77)90190-5
  2. C. Pfleiderer, "Superconducting phases off-electron compounds," Reviews of Modern Physics, vol. 81, pp. 1551-1624, 2009. https://doi.org/10.1103/RevModPhys.81.1551
  3. S. K. Goh, Y. Mizukami, H. Shishido, D. Watanabe, S. Yasumoto, M. Shimozawa, M. Yamashita, T. Terashima, Y. Yanase, T. Shibauchi, A. I. Buzdin, and Y. Matsuda, "Anomalous upper critical field in CeCoIn5/YbCoIn5 superlattices with a Rashba-type heavy Fermion interface," Phys. Rev. Lett., vol. 109, pp. 157006, 2012. https://doi.org/10.1103/physrevlett.109.157006
  4. Y. Mizukami, H. Shishido, T. Shibauchi, M. Shimozawa, S. Yasumoto, D. Watanabe, M. Yamashita, H. Ikeda, T. Terashima, H. Kontani, and Y. Matsuda, "Extremely strong-coupling superconductivity in artificial two-dimensional Kondo lattices," Nature Physics, vol. 7, pp. 849-853, 2011. https://doi.org/10.1038/nphys2112
  5. T. Yamanaka, S. M., R. Endo, Y. Mizukami, H. Shishido, T. Terashima, T. Shibauchi, Y. Matsuda, and K. Ishida, "NMR studieson heavy fermion and conventionalmetal superlattices CeCoIn5/YbCoIn5," Journal of Physics: Conference Series, vol. 807, pp. 012004, 2017. https://doi.org/10.1088/1742-6596/807/1/012004
  6. T. Yoshida, A. Daido, Y. Yanase, and N. Kawakami, "Fate of Majorana Modes in CeCoIn_{5}/YbCoIn_{5} Superlattices: A Test Bed for the Reduction of Topological Classification," Phys. Rev. Lett., vol. 118, pp. 147001, 2017. https://doi.org/10.1103/physrevlett.118.147001
  7. M. Naritsuka, P. F. S. Rosa, Y. Luo, Y. Kasahara, Y. Tokiwa, T. Ishii, S. Miyake, T. Terashima, T. Shibauchi, F. Ronning, J. D. Thompson, and Y. Matsuda, "Tuning the Pairing Interaction in a d-Wave Superconductor by Paramagnons Injected through Interfaces," Phys. Rev. Lett., vol. 120, pp. 187002, 2018. https://doi.org/10.1103/physrevlett.120.187002
  8. G. Nakamine, T. Yamanaka, S. Kitagawa, M. Naritsuka, T. Ishii, T. Shibauchi, T. Terashima, Y. Kasahara, Y. Matsuda, and K. Ishida, "Modification of magnetic fluctuations by interfacial interactions in artificially engineered heavy-fermion superlattices," Physical Review B, vol. 99, pp. ooooo, 2019.
  9. M. Naritsuka, S. Nakamura, Y. Kasahara, T. Terashima, R. Peters, and Y. Matsuda, "Coupling between the heavy-fermion superconductor CeCoIn5 and the antiferromagnetic metal CeIn3 through the atomic interface," Physical Review B, vol. 100, pp. ooooo, 2019.
  10. J. Kim, H. Lee, S. Lee, S. Park, T. Park, Y. Cho, H. Lee, W. N. Kang, and W. S. Choi, "Synthesis of heavy fermion CeCoIn5 thin film via pulsed laser deposition," Curr. Appl. Phys., vol. 19, pp. 1338-1342, 2019. https://doi.org/10.1016/j.cap.2019.08.021
  11. C. Petrovic, P. G. Pagliuso, M. F. Hundley, R. Movshovich, J. L. Sarrao, J. D. Thompson, Z. Fisk, and P. Monthoux, "Heavy-fermion superconductivity in CeCoIn5 at 2.3 K," J. Phys. - Condens. Mat., vol. 13, pp. L337-L342, 2001. https://doi.org/10.1088/0953-8984/13/17/103
  12. E. G. Moshopoulou, J. L. Sarrao, P. G. Pagliuso, N. O. Moreno, J. D. Thompson, Z. Fisk, and R. M. Ibberson, "Comparison of the crystal structure of the heavy-fermion materials CeCoIn5, CeRhIn5 and CeIrIn5," Applied Physics A: Materials Science & Processing, vol. 74, pp. s895-s897, 2002. https://doi.org/10.1007/s003390201673
  13. J. W. Matthews and A. E. Blakeslee, "Defects in epitaxial multilayers: I. Misfit dislocations," Journal of Crystal Growth, vol. 27, pp. 118-125, 1974. https://doi.org/10.1016/S0022-0248(74)80055-2
  14. Z. W. Shao, L. L. Wang, T. C. Chang, F. Xu, G. Y. Sun, P. Jin, and X. Cao, "Controllable phase-transition temperature upon strain release in VO2/MgF2 epitaxial films," Journal of Applied Physics, vol. 128, pp. 045303, 2020. https://doi.org/10.1063/5.0011423
  15. F. Sanchez-Bajo and F. L. Cumbrera, "The Use of the Pseudo-Voigt Function in the Variance Method of X-ray Line-Broadening Analysis," J. Appl. Crystallogr., vol. 30, pp. 427-430, 1997. https://doi.org/10.1107/S0021889896015464
  16. A. G. Zaitsev, A. Beck, R. Schneider, R. Fromknecht, D. Fuchs, J. Geerk, and H. V. Lohneysen, "Deposition of superconducting CeCoIn5 thin films by co-sputtering and evaporation," Physica C, vol. 469, pp. 52-54, 2009. https://doi.org/10.1016/j.physc.2008.11.001
  17. J. Hanisch, F. Ronning, R. Movshovich, and V. Matias, "Pulsed laser deposition of CeCoIn5 thin films," Physica C, vol. 470, pp. S568-S569, 2010. https://doi.org/10.1016/j.physc.2009.10.038