• Title/Summary/Keyword: High-Tech Construction

Search Result 158, Processing Time 0.023 seconds

Isothermal Conduction Calorimetry Analysis of Alkali Activated Slag Binder (알칼리 활성 슬래그 결합재의 미소수화열 분석)

  • Choi, Young-Cheol;Cho, Hyun-Woo;Oh, Sung-Woo;Moon, Gyu-Don
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.3 no.3
    • /
    • pp.237-243
    • /
    • 2015
  • In this research, isothermal conduction calorimetry analysis has been conducted to investigate the reactivity of alkali activated slag binders. In order to secure the reactivity and workability of alkali activated slag binders, experiences with various types and concentrations of alkali activators were performed. Isothermal conduction calorimetry were measured with different alkali activators and mass ratio of $SO_3$ to binders as variables, and sodium tripolyphosphate ($Na_2P_3O_{10}$) and hydrated sodium borate ($Na_2B_4O_710H_2O$) were used to control setting time. As a results, alkali activated slag binders required alkali activators with 4 to 5 percent of concentration to accelerate the formation of calcium silicate hydrate(C-S-H) by alkali-activation, and overall heat generation rate delayed as accumulated heat decreased due to the high $SO_3$ contents. Moreover, the use of hydrated sodium borate as setting retarder causes elongated setting time due to delaying heat generation, so it can be considered that setting retarder played an important role in delaying total heat generation rate.

A study on the characteristic and designing condition of Curtain wall (Curtain Wall의 특성 및 설계조건에 관한 연구)

  • Jeong, Eul-Gyu;Im, Chil-Sun
    • Journal of the Korea Institute of Building Construction
    • /
    • v.4 no.3
    • /
    • pp.125-131
    • /
    • 2004
  • Nowadays, it seems we are in the high time of construction design because development of construction technology widen the option of construction exterior closing materials and deepen the high-tech construction method with all various materials. When we see the flow of construction market, the mainstream is the high-rise intelligent building, which makes the best use of the small midtown area efficently. Therefore, Alum curtain wall is becoming the main material of exterior construction, the concept of which is changing from just a simple window frame to an outer wall which has comprehensive function and capability. As we think of the importance of Curtain wall as a comprehensive outer wall, We should do thorough technical examination and verification at the stage of construction design and plan of carrying out construction.

A Case study on reinforced retaining wall backfilled by soil cement (쏘일시멘트 보강토옹벽 사례 연구)

  • Lee, Myung-Jae;Jang, Ki-Soo;Lee, Jin-Hwan;Paik, Min-Cheol
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2004.03b
    • /
    • pp.985-994
    • /
    • 2004
  • The application of the reinforced retaining wall has increased in the last 10 years in Korea. The height of reinforced wall is generally limited to less than 15m. It has been reported that the reinforced wall higher than 10m should have higher strength reinforcement or should reduce the lateral earth pressure of the reinforced wall to secure the stability of the wall. In this study, the reinforced retaining wall was constructed 14m high, backfilled by a mixture of soil and cement and instrumented on the reinforcement elements. The instrumented reinforced wall was monitored during and after construction. Field monitoring result shows that a backfill by a mixture of soil and cement reduced the tensile stress developed on the reinforcing elements and the reinforced wall backfilled by a mixture of soil and cement performed successful.

  • PDF

Sustainable SCC with high volume recycled concrete aggregates and SCMs for improved mechanical and environmental performances

  • Zhanggen Guo;Ling Zhou;Qiansen Sun;Zhiwei Gao;Qinglong Miao;Haixia Ding
    • Advances in concrete construction
    • /
    • v.16 no.6
    • /
    • pp.303-316
    • /
    • 2023
  • Using industrial wastes and construction and demolition (C&D) wastes is potentially advantageous for concrete production in terms of sustainability improvement. In this paper, a sustainable Self-Compacting Concrete (SCC) made with industrial wastes and C&D wastes was proposed by considerably replacing natural counterparts with recycled coarse aggregates (RCAs) and supplementary cementitious materials (SCMs) (i.e., Fly ash (FA), ground granulated blast furnace slag (GGBS) and silica fume (SF)). A total of 12 SCC mixes with various RCAs and different combination SCMs were prepared, which comprise binary, ternary and quaternary mixes. The mechanical properties in terms of compressive strength and static elasticity modulus of recycled aggregates (RA-SCC) mixes were determined and analyzed. Microstructural study was implemented to analyze the reason of improvement on mechanical properties. By means of life cycle assessment (LCA) method, the environmental impacts of RA-SCC with various RCAs and SCMs were quantified, analyzed and compared in the system boundary of "cradle-to-gate". In addition, the comparison of LCA results with respect to mechanical properties was conducted. The results demonstrate that the addition of proposed combination SCMs leads to significant improvement in mechanical properties of quaternary RA-SCC mixes with FA, GGBS and SF. Furthermore, quaternary RA-SCC mixes emit lowest environmental burdens without compromising mechanical properties. Thus, using the combination of FA, GGBS and SF as cement substitution to manufacture RA-SCC significantly improves the sustainability of SCC by minimizing the depletion of cement and non-renewable natural resources.

Quantified Impact Analysis of Construction Delay Factors on Steel Staircase Systems

  • Kim, Hyun-Mi;Kim, Tae-Hyung;Shin, Young-Keun;Kim, Young-Suk;Han, Seungwoo
    • Journal of the Korea Institute of Building Construction
    • /
    • v.12 no.6
    • /
    • pp.636-647
    • /
    • 2012
  • Construction projects have become so large, complicated and incredibly high-tech that process management is currently considered one of the most important issues. Unlike typical manufacturing industries, most major construction activities are performed in the open air and thus are exposed to various environmental factors. Many studies have been conducted with the goal of establishing efficient techniques and tools for overcoming these limitations. Productivity analysis and prediction, one of the related research subjects, must be considered when evaluating approaches to reducing construction duration and costs. The aim of this research is to present a quantified impact analysis of construction delay factors on construction productivity of a steel staircase system, which has been widely applied to high rise building construction. It is also expected to improve the process by managing the factors, ultimately achieving an improvement in construction productivity. To achieve the research objectives, this paper analyzed different delay factors affecting construction duration by means of multiple regression analysis focusing on steel staircase systems, which have critical effects on the preceding and subsequent processes in structure construction. Statistical analysis on the multiple linear regression model indicated that the environment, labor and material delay factors were statistically significant, with 0.293, 0.491, and 0.203 as the respective quantified impacts on productivity.

Carbonation Properties of Recycled Aggregate Concrete by Specified Concrete Strength (설계기준 강도별 순환골재 콘크리트의 탄산화 특성)

  • Lee, Jun;Lee, Bong-Chun;Cho, Young-Keun;Park, Kwang-Min;Jung, Sang-Hwa
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.5 no.1
    • /
    • pp.85-93
    • /
    • 2017
  • This paper presents mechanical properties and carbonation behavior of the recycled aggregate concretes(RAC) in which natural aggregate was replaced by recycled coarse aggregate and fine aggregate by specified concrete strength levels(21, 35, 50MPa). A total of 18 RAC were produced and classified into six series, each of which included three mixes designed with three specified concrete strength levels of 21MPa, 35MPa and 50MPa and three recycled aggregate replacement ratios of 0, 50 and 100%. Physical and mechanical properties of RAC were tested for slump test, compressive strength, and carbonation depth. The test results indicated that the slump of RAC could be improved or same by recycled coarse aggregate replacement ratios, when compared with natural aggregate. But slump of RAC was decreased as the recycled fine aggregate replacement ratios increase. Also, the test results showed that the compressive strength was decreased as the recycled aggregate replacement ratios increased and it had a conspicuous tendency to decrease when the content of the recycled aggregate exceeded 50%. Furthermore, the result indicated that the measured carbonation depth increases by 40% with the increase of the recycled aggregate replacement. In the case of the concrete having low level compressive strength, the increase of carbonation depth tends to be higher when using the RCA. However, the trend of carbonation resistivity in high level compressive strength concrete is similar to that obtained in natural aggregate concrete. Therefore, an advance on the admixture application and mix ratio control are required to improve the carbonation resistivity when using the recycled aggregate in large scale.

Hydration of High-volume GGBFS Cement with Anhydrite and Sodium Sulfate (경석고 및 황산나트륨을 함유한 하이볼륨 고로슬래그 시멘트의 수화특성)

  • Moon, Gyu-Don;Choi, Young-Cheol
    • Journal of the Korea Concrete Institute
    • /
    • v.27 no.2
    • /
    • pp.177-184
    • /
    • 2015
  • In order to use the high-volume slag cement as a construction materials, a proper activator which can improve the latent hydraulic reactivity is required. The dissolved aluminum silicon ions from ground granulated blast furnace slag (GGBFS) react with sulfate ions to form ettringite. The proper formation of ettringite can increase the early-age strength of high-volume GGBFS (80%) cement. The aim of this study is to investigate the hydration properties with sulfate activators (sodium sulfate, anhydrite). In this paper, the effects of $Na_2SO_4$ and $CaSO_4$ on setting, compressive strength, hydration, micro-structure were investigated in high-volume GGBFS cement and compared with those of without activator. Test results indicate that equivalent $SO_3$ content of 3~5% improve the early-age hydration properties such as compressive strength, heat evolution rate, micro-pore structure in high-volume GGBFS cement.

Principal Items of Construction Management for Developing Construction Guide of Large Spatial Roof Construction (대공간 지붕공사 시공지침서 개발을 위한 중점관리항목 도출)

  • Cha, Min-Su;Lee, Myung-Do
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2017.11a
    • /
    • pp.197-198
    • /
    • 2017
  • Large spatial construction needs to consider various construction management factors through the construction guide, including high-tech roofing works for creating large space without columns and erecting large spatial structure. However, the domestic large spatial construction relies on overseas construction technologies due to the lack of construction guide of large spatial construction and experience in similar type of project. To improve the problem, we deduced principal items of construction management considering characteristics of large spatial construction as a preliminary study for developing a construction guide.

  • PDF

The Attitude of Construction Students toward Sustainability in the Built Environment (건축물에서의 친환경개념에 대한 건축공학전공 대학생의 태도)

  • Ahn, Yong-Han;Kwon, Hyuk-Soo
    • Journal of Engineering Education Research
    • /
    • v.11 no.3
    • /
    • pp.70-77
    • /
    • 2008
  • This study investigates the level of the construction student's familiarity and interest in sustainability, their attitude toward sustainability, and the factors for bringing student's attitude toward sustainability. To accomplish the main objectives, this study employes a survey instrument created and developed by the authors. This is a descriptive and correlation study using responses from construction students at the Building Construction department at Virginia Polytechnic Institute and State University in Virginia. The results of descriptive statistics and multiple regression using SPSS version 16 present the following findings. Construction students perceive that they have a relatively high level of familiarity with sustainable construction and sustainability. Secondly, student's attitude toward sustainability is changed based on several factors such as sustainable construction courses, a professor who is interested in sustainability, their interest in the construction industry, university initiative, and the level of sustainability for student's learning facilities. Finally, the construction student's attitude toward sustainability can be improved by offering sustainable construction courses in construction programs, having professors who teach and research sustainability, and adopting sustainable initiatives at the university level such as campus recycling and various sustainable programs.

Driving Burj Dubai Core Walls with an Advanced Data Fusion System.

  • Cranenbroeck, Joel Van;Hayes, Douglas McL;Sparks, Ian R
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • v.1
    • /
    • pp.465-469
    • /
    • 2006
  • In recent years there has been considerable interest in the construction of super high-rise buildings. From the prior art, various procedures and devices for surveys during and after the phase of erection of a high-rise building are known. High-rise buildings are subject to strong external tilt effects caused, for instance, by wind pressures, unilateral thermal effects by exposure to sunlight, and unilateral loads. Such effects are a particular challenge in the phase of construction of a high-rise building, in as much as the high-rise building under construction is also subject to tilt effects, and will at least temporarily lose its - as a rule exactly vertical - alignment. Yet construction should progress in such a way that the building is aligned as planned, and particularly so in the vertical, when returning into an un-tilted basic state.It is essential that a straight element be constructed that theoretically, even when moving around its design centre point due to varying loads, would have an exactly vertical alignment when all biasing conditions are neutralised. Because of differential raft settlement, differential concrete shortening, and construction tolerances, this ideal situation will rarely be achieved. This paper describes a procedure developed by the authors using GPS observations combined with a network of precision inclination sensor to provide reliable coordinated points at the top of the worldwide highest-rise building under construction in Dubai.

  • PDF