• Title/Summary/Keyword: High-Speed Transmission Line

Search Result 167, Processing Time 0.022 seconds

A Study on the Transmission Characteristics and Channel Capacity of Telephone Line Communication System (전화선 통신 시스템의 전송특성 및 채널용량에 관한 연구)

  • Roh, Jae-Sung;Chang, Tae-Hwa
    • Journal of Digital Contents Society
    • /
    • v.10 no.2
    • /
    • pp.233-238
    • /
    • 2009
  • The advances in the digital communication and network technology, Internet technology and the proliferation of smart appliances in home, have dramatically increased the need for a high speed/high quality home network. As consumer electronic devices and computing devices are increasing in the home network, it is obvious that the data traffic of home network increases as well. Various home network devices want to access Internet servers to get multimedia contents. Therefore, we introduce TLC(Telephone Line Carrier) system for networked digital consumer electronic appliances within a house using Ethernet or wire/wireless technology. In the future home network environment, the primary purposes of the smart home network based TLC are to create low-cost, easily deployable, high performance, and wide coverage throughout the home. In this paper, the channel capacity of telephone line communication system is evaluated and compared as a function of transmission power, number of OFDM carrier, channel loss, and noise loss for smart home network.

  • PDF

A Study on the Digital Relaying Techniques by Real-Time Symmetrical Components of Power System (전력계통의 실시간 대칭성분을 이용한 거리계전 기법에 관한 연구)

  • 신명철;김철환
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.36 no.10
    • /
    • pp.695-702
    • /
    • 1987
  • Nowadays as the power systems have been more complicated and have grown to ultra high voltage, it requires a accurate and high speed relaying scheme to improve the reliability and stability of power systems for a harmonious power supplying. For this purpose voltage and current have to be measured at the location of the protective device and the short circuit impedance must be determined. This paper presents the application methods and some results of digital distance relaying scheme which is based upon the theouy of real-time symmetrical components. Usually the symmetrical component have been used to solve the transient systems as well as the steady state systems under unbalanced systems. But, real-time symmetrical component frequently have not been applied to on-line control region of the large power system. We have tried to apply this method to deal with the various type of faults on artificial transmission line. And experimental results demonstrate the validity of the proposed techniques. Therefore, this study is expected that it is contributed to improve the reliability of power supplying, searching for the fault location rapidly and exactly in power system.

  • PDF

An Adaptive Equalizer for Error Free 40GbE Data Transmission on 40 inch High-Speed Backplane Channel (40인치 고속 백플레인 채널에서 에러없이 40GbE 데이터 전송을 위한 적응 등화기)

  • Yang, Choong-Reol;Kim, Kwang-Joon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.35 no.5B
    • /
    • pp.809-815
    • /
    • 2010
  • This paper proposes the structures and algorithms for the adaptive equalizer that are required to allow high speed signaling over 40 Gb/s across a backplane channel. The proposed adaptive DFE has a fast convergence and low computational complexity. Simulations with a 40 Gb/s show that our adaptive equalizer can meet the IEEE 802.3ba requirement for backplane strip line up to 40 inches.

A Digital Distance Relaying Algorithm using a Wavelet Transformation (Wavelet 변환을 이용한 디지털 거리계전 알고리즘)

  • Kang, Sang-Hee;Lee, Joo-Hun;Nam, Soon-Ryul;Park, Jong-Keun
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.48 no.10
    • /
    • pp.1215-1221
    • /
    • 1999
  • A high speed digital distance relaying algorithm based on a Wavelet Transformation is proposed. To obtain stable phasor values very quickly, first, a lowpass filter which has low cutoff frequency is used. Secondly, db2(Daubechies 2) Wavelet which has the data window of 4 samples is used. A FIR filter which removes the DC-offset component in current relaying signals is applied. In accordance with a series of tests, the operation time of the relaying algorithm is less than 3/4 cycles after faults in a 80 [km], 154[kV], 60[Hz] over-head transmission line system.

  • PDF

Micromachined Low-Loss Low-Dispersion Elevated CPW for High-Speed Interconnects

  • S. H. Jeong;Lee, S. N.;Lee, S. G.;J. G. Yook;Kim, Y. J.;Park, H. K.
    • Journal of electromagnetic engineering and science
    • /
    • v.2 no.2
    • /
    • pp.59-64
    • /
    • 2002
  • In this paper, 10$\mu$ m-elevated MEMS CPWs on various substrates are presented. Effective dielectric constants of elevated CPW(ECPW) on polyimide-loaded silicon or alumina substrate are examined and characteristic impedances are also computed versus elevation height. Dispersive property of ECPW and its electromagnetic field distributions are studied through 3-D FDTD algorithm for optimum design. Attenuation of ECPW is measured with TRL calibration procedure and revealed about 3.2 43 lower than that of conventional CPW on the same low-resistivity silicon at 40 CHz. ECPW on polyimide-loaded silicon with overlapped configuration reveals 0.2 dB/mm. Especially, alumina substrate imposes better attenuation than silicon.

Multi-Gbit/s Digital I/O Interface Based on RF-Modulation and Capacitive Coupling

  • Shin, Hyunchol
    • Journal of electromagnetic engineering and science
    • /
    • v.4 no.2
    • /
    • pp.56-62
    • /
    • 2004
  • We present a multi-Gbit/s digital I/O interface based on RF-modulation and capacitive-coupling over an impedance matched transmission line. The RF-interconnect(RFI) can greatly reduce the digital switching noise and eliminate the dc power dissipation over the channel. It also enables reduced signal amplitude(as low as 200 ㎷) with enhanced data rate and affordable circuit overhead. This paper addresses the system advantages and implementation issues of RFI. A prototype on-chip RFI transceiver is implemented in 0.18-${\mu}{\textrm}{m}$ CMOS. It demonstrates a maximum data rate of 2.2 Gbit/s via 10.5-㎓ RF-modulation. The RFI can be very instrumental for future high-speed inter- and intra-ULSI data links.

A New Ultra High Speed Distance Relaying Method Using Travelling Wave Technique (진행파 기법을 이용한 새로운 초고속 거리계전 방식)

  • 강상희;박종근
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.40 no.12
    • /
    • pp.1203-1210
    • /
    • 1991
  • This paper proposes a new distance relaying method based on fault initiated travelling waves for transmission line protection. The characteristics of this method are ultra high speed and excellent sensitivity. Travelling wave technique which is one of the distance relaying methods uses the discrete cross correlation function for discrimination between internal and external fault is remarkably reduced in case of a close up fault and an inception angle near or equal to zero fault. To cope with this problem, a new fast algorithm which uses backward wave summation method with fixed window is presented. The proposed method has been tested by numerical simulations using the EMTP.

  • PDF

Analog Adaptive Pulse shaping and Line Equalizer For 400Mb/s data rate on 50m STP Cable

  • Lee, Hoon;Kwisung Yoo;Gunhee Han
    • Proceedings of the IEEK Conference
    • /
    • 2003.07b
    • /
    • pp.887-890
    • /
    • 2003
  • High Speed data transmission over a long length of cable is limited due to the limited bandwidth of a cable which introduces ISI(Inter Symbol Interference). In order to compensate for the loss and phase dispersion in the cable, a pulse shaping in a transmitter and a line equalizer in receiver can be used. This paper presents a low-power and small-ana analog adaptive pulse shaping circuit and line equalizer, The design was fabricated in a 0.25${\mu}{\textrm}{m}$ mixed-signal CMOS process. The proposed pulse shaping circuit and equalizer operate at 400Mb/s on 50m STP(Shielded Twisted Pair) cable. It consumes 28.5${\mu}{\textrm}{m}$ with a 2.5-V power supply and occupies only 0.098 $\textrm{mm}^2$.

  • PDF

Induced Current Calculation in a Human Body Model due to Magnetic field in High Speed Railway (고속철도내 자기장에 의한 인체 모델에서의 유도 전류 계산)

  • Han, In-Su;Lee, Tae-Hyung;Park, Choon-Soo;Kim, Ki-Hwan
    • Proceedings of the KSR Conference
    • /
    • 2008.11b
    • /
    • pp.208-213
    • /
    • 2008
  • In recent society, the quality of human life has improved due to the use of electric appliances and the high powered electrical equipments. However, lots of electric appliances and equipments generate the electromagnetic field hazard. Many studies have been made about the wrong behavior of machines due to electromagnetic fields, the interferences in communication equipments, the possibility of the electromagnetic field hazard in human body, etc. There exist international standards about the RF equipments (ex. mobile phone, antenna, etc.). But, many researchers involved in power frequency electric and magnetic field only propose the prudential avoidance. In this paper, induced currents in a human body model due to magnetic fields in high speed railway are calculated by two dimensional impedance method. Power frequency(60Hz) magnetic fields are calculated and induced currents are simulated by Faraday's law. Induced currents are simulated with induced voltage, human body model impedances due to Ohm's law, magnetic fields derived from Biot-Savart's law and Transmission Line Method in high speed railway.

  • PDF

Galloping characteristics of a 1000-kV UHV iced transmission line in the full range of wind attack angles

  • Lou, Wenjuan;Wu, Huihui;Wen, Zuopeng;Liang, Hongchao
    • Wind and Structures
    • /
    • v.34 no.2
    • /
    • pp.173-183
    • /
    • 2022
  • The galloping of iced conductors has long been a severe threat to the safety of overhead transmission lines. Compared with normal transmission lines, the ultra-high-voltage (UHV) transmission lines are more prone to galloping, and the damage caused is more severe. To control the galloping of UHV lines, it is necessary to conduct a comprehensive analysis of galloping characteristics. In this paper, a large-span 1000-kV UHV transmission line in China is taken as a practical example where an 8-bundled conductor with D-shaped icing is adopted. Galerkin method is employed for the time history calculation. For the wind attack angle range of 0°~180°, the galloping amplitudes in vertical, horizontal, and torsional directions are calculated. Furthermore, the vibration frequencies and galloping shapes are analyzed for the most severe conditions. The results show that the wind at 0°~10° attack angles can induce large torsional displacement, and this range of attack angles is also most likely to occur in reality. The galloping with largest amplitudes in all three directions occurs at the attack angle of 170° where the incoming flow is at the non-iced side, due to the strong aerodynamic instability. In addition, with wind speed increasing, galloping modes with higher frequencies appear and make the galloping shape more complex, indicating strong nonlinear behavior. Based on the galloping amplitudes of three directions, the full range of wind attack angles are divided into five galloping regions of different severity levels. The results obtained can promote the understanding of galloping and provide a reference for the anti-galloping design of UHV transmission lines.