• 제목/요약/키워드: High-Speed Machining

검색결과 630건 처리시간 0.023초

공작기계용 40,000rpm 고속주축의 정·동적 해석과 최적설계에 관한 연구 (Static and Dynamic Analysis and Optimization Design of 40,000-rpm High-Speed Spindle for Machine Tools)

  • 김동현;이춘만;최현진
    • 대한기계학회논문집A
    • /
    • 제37권1호
    • /
    • pp.105-111
    • /
    • 2013
  • 주축은 공작기계의 핵심요소로서 주축의 정 동적 특성은 공작물의 가공정밀도에 직접적으로 영향을 미친다. 주축의 특성은 축 크기, 베어링 간격, 내장모터의 위치 등에 의해 결정된다. 그러므로 축 크기, 베어링 간격, 모터위치의 선정은 주축 특성을 개선하는데 중요한 요소라 할 수 있다. 본 논문은 40,000rpm 고속주축의 정 동적 해석과 최적 설계에 관한 연구로, 유한요소해석과 최적화를 위한 통계분석을 하였다. 이를 위하여 반응표면법을 사용하여 목적함수와 설계변수를 최적화하였다. 최적화 대상은 주축의 고유진동수의 최대화와 변위의 최소화이다. 설계변수는 축길이, 축직경, 베어링 간격, 모터위치로 선정했다. 최적설계를 통해 도출된 설계안으로 초기모델보다 개선된 결과를 얻을 수 있었고, 본 연구의 결과를 주축 설계에 적용하면 주축의 정 동적 특성 개선에 도움이 될 것으로 기대된다.

가공변수의 불확실성을 고려한 전자제어식 차동제한장치 솔레노이드 어셈블리의 강건 최적설계 (Robust Optimization of the Solenoid Assembly in Electromagnetic Limited Slip Differential by Considering the Uncertainties in Machining Variables)

  • 오상균;이광기;서창희;정윤철;김영석
    • 대한기계학회논문집A
    • /
    • 제35권10호
    • /
    • pp.1307-1313
    • /
    • 2011
  • 전자제어식 차동제한 장치는 기계식에 비해서 능동제어가 가능하고 응답성이 좋아 기계식을 대체해 나가고 있다. STS 304 재질의 코일 하우징은 전자제어식 차동제한장치의 솔레노이드 어셈블리에서 가장 중요한 부품이다. 코일 하우징의 제조시 높은 형상 정밀도가 필수적이나, STS 304의 박판 사용과 가공변수의 변동으로 정밀 가공이 어렵다. 본 연구의 목적은 코일하우징의 가공조건에서 강건해를 구하여 평균과 변동을 최적화 하는 것이다. 코일하우징의 형상정밀도 평균과 표준편차를 최소화 하기 위한 주요 변수로 조의 척킹압력, 절삭속도, 이송속도의 평균과 표준편차가 고려됐다. 가공변수의 변동을 고려하여 평균과 표준편차를 모두 최소화 하는 최적의 조건을 선정하고자 반응표면모델 기반 2차 테일러 전개를 통한 강건 최적설계를 수행하였다.

다구치 방법을 이용한 지르코니아 세라믹스 페룰의 연삭 가공 특성 평가 (Evaluation of Grinding Machining Characteristics of $ZrO_2$ Ferrule Using the Taguchi Method)

  • 김기환;최영재;홍원표;이석우;최헌종
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2004년도 추계학술대회 논문집
    • /
    • pp.516-519
    • /
    • 2004
  • As the optical communication industry is developed, the demand of optical communication part is increasing. ZrO$_2$ ceramic ferrule is very important part which can determines the transmission efficiency and information quality to connect the optical fibers. In general ZrO$_2$ ceramic ferrule is manufactured by grinding process because the demands precision is very high. And the co-axle grinding process of ZrO$_2$ ceramic ferrule is to make its concentricity all of uniform before centerless grinding. This paper deals with the analysis of the process parameters such as grinding wheel speed, grinding feedrate and regulating wheel speed as influential factors, on the concentricity and surface finish developed based on Taguchi's experimental design methods. Taguchi s tools such as orthogonal array, signal-to-noise ratio, factor effect analysis, etc. have been used for this purpose optimal condition has been found out. Thus, if possible be finding highly efficient and quality grinding conditions.

  • PDF

치과용 Ti-Xwt%Cu 합금의 연삭성 (Grindability of Ti-Xwt%Cu Alloys for Dental Applications)

  • 안재석
    • 대한치과기공학회지
    • /
    • 제31권4호
    • /
    • pp.31-36
    • /
    • 2009
  • This study evaluated the grindability of series of Ti-Cu alloys in order to develop a Ti alloy with better grindability than commercially pure titanium(CP Ti). Experimental Ti-Xwt%Cu alloys(X=2, 5, 10) were made in an argon-arc melting furnace. Slabs of experimental alloys were ground using a SiC abrasive wheel on an electric handpiece at circumferential speed(15000, 30000rpm) by applying a force(250, 300gr). Grindability was evaluated by measuring the amount of metal volume removed after grinding for 2 minutes. Data were compared to those for CP Ti and Ti-6wt%Al-4wt%V alloy. From results, It was observed that the grindability of Ti-Cu alloys increased with an increase in the Cu concentration compared to CP Ti, particularly the 10wt%Cu alloy exhibited the highest grindability at all speeds. By alloying with Cu, the Ti exhibited better grindability at high speed. The continuous precipitation of $Ti_2Cu$ among the ${\alpha}$-matrix grains made this material less ductile and facilitated more effective grinding because small segments more readily formed. The Ti-10wt%Cu alloy has a great potential for use as a dental machining alloy.

  • PDF

고속가공의 안정성 향상을 위한 수직선반의 설계 (Design of a Vertical Lathe for the Improved Stability at High Speed Machining)

  • 노승훈;손재율;노경호;김성철
    • 대한기계학회논문집A
    • /
    • 제27권10호
    • /
    • pp.1728-1737
    • /
    • 2003
  • The vertical lathe is a very popular machine tool in modem manufacturing industries because of its small area of installation. The small installation area is highly desirable for the flexibility improvement of the manufacturing systems such as FMS, CIM, and IMS. The vertical lathe, however, has much taller height compared to the traditional horizontal lathe, and consequently more severe vibrations. In this study, the structure of a vertical lathe is analyzed to investigate the dynamic properties and further to establish some ideas of the design alteration for the improved dynamic stability even at the higher operating speed. The simulation model is implemented to apply those design alterations for the optimization. The result of this study is not only prosperous but also ready to be applied to the optimum design of various machine tool structures for the improved stability.

금형용 초경합금재의 내면연삭 가공능률향상에 관한 기초적 연구 (A Fundamental Study on the Internal Grinding of Tungste Carbide Materials for Metal Mould to Improve the Machining Performance)

  • 허성중;이규천;김영일;김원일
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1996년도 춘계학술대회 논문집
    • /
    • pp.39-43
    • /
    • 1996
  • This paper described on the effect of residual stocks in internal grinding of tungsten carbide materials in order to improve the grinding efficiency as well as grinding accuracy. Though the fundamental investigation is carried out for tungsten carbide materials using electroplated diamond wheel, the residual stock after grinding process is effective to the grinding effciiency. The obtained results are as follows: (1) Under the depth of cut(t) is constant and decreasing the workpiece velocity(Vw), the resiudal stock after grinding is increased, but the difference is little less than the difference by table speed. (2) Increasing the wheel velocity, the residual stock after grinding is decreased. Therefore in order to minimize the residual stock, the wheel velocity should be increased as far as possible. (3) The surface foughness and out-of roundness increased with depth of cut and table speed, and decreased with wheel velocity, but it may as well adopt as much as polssible under the dimensional tolerance which is required for high efficiency grinding. (4) In order to remove residual stock, the spark-out grinding shoule be done, and it also can be improved about 20 .approx. 25% throughout spark-out grinding, and the number of optimal spark-out times were within 10 times.

  • PDF

초경 엔드밀의 플라즈마 이온 주입과 저온 열처리를 통한 내마멸성 향상 (Enhancement of Wear Resistance by Low Heat Treatment and the Plasma Source Ion Implantation of Tungsten Carbide Tool)

  • 강성기;왕덕현;김원일
    • 한국생산제조학회지
    • /
    • 제20권2호
    • /
    • pp.162-168
    • /
    • 2011
  • In this research, nitrogen plasma source ion implantation(PSII) of non-coated tungsten carbide endmill tools was conducted with low heat treatment for increasing wear resistance. After the low heat treatment of PSIIed tools to give a homogeneity of wear resistance, the surface modification of tools was analyzed by hardness test, surface roughness and cutting forces. As for the resultant cutting forces, low heat treatment in temperature of $400^{\circ}C$ and $500^{\circ}C$ is stable because of low cutting resistance. The 20-minutes heat treated tool at spindle speed 25000rpm has superiority of surface roughness, Ra of $0.420{\mu}m$ and was found to have good wear resistance. The higher hardness value was obtained by increasing temperature from $300^{\circ}C$ to $600^{\circ}C$ for PSIIed tools with low heat treatment. As the PSIIed tools under 10minutes at temperature of $600^{\circ}C$ have the highest hardness as Hv of 2349.8, It was analyzed that temperature processing give much influences on hardness.

구성인선을 고려한 소형 박판 밀링공구의 설계 (Design of A Small Thin Milling Cutter Considering Built-up Edge)

  • 정경득;고태조;김희술
    • 한국정밀공학회지
    • /
    • 제18권5호
    • /
    • pp.130-136
    • /
    • 2001
  • Generally, a metal slitting saw is plain milling cutter with thickness less than 3/16 inch. This is used for cutting a workpiece that high dimensional accuracy and surface finish is necessary. A small thin milling cutter like a metal slitting saw is useful for machining a narrow groove. In this case, built up edge(BUE) is severe at each tooth and affects the surface integrity of the machined surface and tool wear. It is well known that tool geometry and cutting conditions are decisive factors to remove BUE. In this paper, we optimized the geometry of the milling cutter and selected cutting conditions to remove BUE by the experimental investigation. The experiment was planned with Taguchi method based on the orthogonal array of design factors such as coating, rake angle, number of tooth, cutting speed, feed rate. Response table was obtained from the number of built-up edge generated at tooth. The optimized tool geometry and cutting conditions could be determined through response table. In addition, the relative effect of factors was identified bh the analysis of variance (ANOVA). Finally, coating and cutting speed turned out important factors for BUE.

  • PDF

공구재종에 따른 엔드밀 가공의 절삭력에 관한 통계적해석 (Statistical Analysis of Cutting Force for End Milling with Different Cutting Tool Materials)

  • 최만성
    • 반도체디스플레이기술학회지
    • /
    • 제15권4호
    • /
    • pp.86-91
    • /
    • 2016
  • End milling is an important and common machining operation because of its versatility and capability to produce various profiles and curved surfaces. This paper presents an experimental study of the cutting force variations in the end milling of SM25C with HSS(high speed steel) and carbide tool. This paper involves a study of the Taguchi design application to optimize cutting force in a end milling operation. The Taguchi design is an efficient and effective experimental method in which a response variable can be optimized, given various control and noise factors, using fewer resources than a factorial design. This study included feed rate, spindle speed and depth of cut as control factors, and the noise factors were different cutting tool in the same specification. An orthogonal array of $L_9(3^3)$ of ANOVA analyses were carried out to identify the significant factors affecting cutting force, and the optimal cutting combination was determined by seeking the best cutting force and signal-to-noise ratio. Finally, confirmation tests verified that the Taguchi design was successful in optimizing end milling parameters for cutting force.

초경 인서트 드릴의 절삭 조건에 관한 연구 (Cutting Conditions of Carbide Insert Drill)

  • 최성윤;황철웅;이상태
    • 한국기계가공학회지
    • /
    • 제20권6호
    • /
    • pp.10-16
    • /
    • 2021
  • Drilling is a crucial process that takes up a significant amount of weight during machining operations. In addition, drill tip-type tools and related operations have been developed for manufacturing industries to achieve economic efficiency. In this study, SM45C carbon steel, widely used for machine structures, was utilized as the working material after quenching and tempering. Insert-tip types of carbide tools, such as TiN and TiAlN, were used as tool materials. Drilling conditions such as the spindle revolution, feed rate, step of cut, and tool diameter were used to measure roughness, roundness, and straightness using the orthogonal array table statistical method. The surface roughness, roundness, and straightness characteristics based on the conditions were analyzed using ANOVA. The results showed that the spindle speed and feed rate were the main factors influencing carbide insert-tip drilling under the same conditions as the experimental conditions.