• Title/Summary/Keyword: High-Speed Flow

Search Result 1,792, Processing Time 0.027 seconds

Flow in a High Speed Compressor Due to Axisymmetric Tip (대칭 팁 간극에 기인한 고속으로 회전하는 압축기에서의 유동)

  • Joo, Hyun Suh;Song, Seung Jin
    • 유체기계공업학회:학술대회논문집
    • /
    • 2002.12a
    • /
    • pp.279-283
    • /
    • 2002
  • The effects of finite gap at the tip of turbomachinery blades have long been topics of both theoretical and experimental research because tip clearance degrades turbomachinery performance. This paper presents an analytical study of radial flow redistribution in a high speed compressor stage with axisymmetric tip clearance. The flow is assumed to be inviscid and compressible. The stage is modeled as an actuator disc and the analysis is carried out in the meridional plane. Upon going through the stage, the radially uniform upstream flow splits into the tip clearance and passage flows. The tip clearance flow is modeled as a jet driven by blade loading, or pressure difference between the pressure and suction sides. The model takes into consideration the detached shocks which occur in the rotor passage at the design point. This shock model is used to calculate the density ratio across the stage. Thus, the model is capable of predicting the kinematic effects of tip clearance in the high speed compressor flow field.

  • PDF

Numerical Analysis of 3-D Turbulent Flows Around a High Speed Train Including Cross-Wind Effects (측풍영향을 고려한 고속전철 주위의 3차원 난류유동 해석)

  • Jung Y. R.;Park W. G.;Ha S. D.
    • Journal of computational fluids engineering
    • /
    • v.1 no.1
    • /
    • pp.71-80
    • /
    • 1996
  • An iterative time marching procedure for solving incompressible turbulent flow has been applied to the flows around a high speed train including cross-wind effects. This procedure solves three-dimensional unsteady incompressible Reynolds-averaged Navier-Stokes equations on a non-orthogonal curvilinear coordinate system using first-order accurate schemes for the time derivatives and third/second-order accurate schemes for the spatial derivatives. Turbulent flows have been modeled by Baldwin-Lomax turbulent model. To validate present procedure, the flow around a high speed train at zero yaw angle was simulated and compared with experimental data. Generally good agreement with experiments was achieved. The flow fields around the high speed train at 9.2°, 16.7°, and 45° of yaw angle were also simulated.

  • PDF

The Effect of Inlet Distorted Flow on Steady and Unsteady Performance of a Centrifugal Compressor (입구 비 균일 유동이 원심압축기의 정상 및 비정상 성능에 미치는 영향)

  • Kang Shin-Hyoung;Park Jae-Hyoung
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.29 no.9 s.240
    • /
    • pp.971-978
    • /
    • 2005
  • Effects of inlet distorted flow on performance, stall and surge are experimentally investigated for a high-speed centrifugal compressor. Tested results for the distorted inlet flow cases are compared with the result of the undistorted one. The performance of compressor is slightly deteriorated due to the inlet distortion. The inlet distortion does not affect the number of stall cell and the propagation velocity. It also does not change stall inception flow rate. However, as the distortion increases, stall starts at the higher flow rate for low speed and at the lower flow rate for high speed. For 50,000 rpm stall occurrs as the flow rate decreases, however disappears fur the smaller flow rate. This is due to the interaction of surge and stall. After the stall and surge interact, the number of stall cell decreases.

INTRODUCTION TO UNSTRUCTURED HYBRID MESH BASED FLOW SIMULATION TECHNIQUE (비정렬 혼합격자 기반 유동해석 기법 소개)

  • Ahn, H.T.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2009.04a
    • /
    • pp.112-115
    • /
    • 2009
  • In this paper, flow simulation algorithms for utilizing unstructured hybrid meshes are introduced. First, various types of meshes are introduced. Advantages and disadvantages of each type of meshes are discussed. Unstructured hybrid mesh approach, that is best suited for high speed viscous flow simulation, is presented. Lastly, various types of flow simulations using unstructured hybrid meshes are introduced.

  • PDF

Study on flow characteristics in entrained flow gasifier with high speed impinging jet (고속충돌노즐을 이용한 분류층 가스화기내의 유동특성에 관한 연구)

  • Lee, Hyo-Jin;Park, Tae-Jun;Lee, Jae-Gu;Kim, Jae-Ho;An, Dal-Hong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.20 no.5
    • /
    • pp.1735-1742
    • /
    • 1996
  • An entrained flow gasifier simulating the cold mode was tested to estimate its performance for coal gasification and flow characteristics with a developed high speed impinging jet nozzle. The burner was designed for high temperature and high pressure(HTHP) conditions, especially for IGCC(Integrated Coal Gasification Combined Cycle). In order to get proper size of droplets for high viscous liquid such as coal slurry, atomization was achieved by impacting slurry with high speed (over 150m/sec) secondary gas (oxygen/or air)/ Formed water droplets were ranged between 100.mu.m to 20.mu.m in their sizes. The flow characteristics in the gasifier was well understood in mixing between fuel and oxidizer. Both external and internal recirculation zones were closely investigated through experimentation with visualization and numerical solutions from FLUENT CODE.

Numerical Analysis of 2-Dimensional Viscous Compressible Flow around the High Speed Train (고속열차 주위의 점성 압축성 2차원 유동해석)

  • Ha, Seong-Do;Kim, Yu-Il
    • 연구논문집
    • /
    • s.25
    • /
    • pp.13-22
    • /
    • 1995
  • At the running speed higher than 250 km/h, several aerodynamic problems such as the increase of aerodynamic resistance, aerodynamic noise, pressure fluctuation at the tunnel entry, impulsive wave at the tunnel exit bring about the power consumption, deterioration of riding quality, and severe environmental noise. To solve these aerodynamic problems, the flow phenomena around the high speed train have to be analyzed in detail. In this study, the flow around the train is modelled as the 2-dimensional viscous compressible flow and the flow field is calculated numerically for the three different types of geometry and running speed. The aerodynamic drag coefficient and the pressure coefficient are evaluated each case.

  • PDF

A Study on the Flow Field Characteristics of Air Induction System for Reducing the Signal-to-Noise in the MAFS Output

  • Yoo, Seoung-Chool
    • Journal of ILASS-Korea
    • /
    • v.5 no.1
    • /
    • pp.49-57
    • /
    • 2000
  • This study presents the flow visualization results, velocity and turbulence intensity measurements made within an air filter cover and entry region of a mass air flow sensor (MAFS) which is used in an induction system of 3.8L engine. Flow structure in two air filter cover assemblies were examined. The first was a clear plastic replica of the production cover while the second was a modified clear plastic cover with a geometry configured to reduce fluctuations. High speed flow visualization and laser doppler velocimetry (LDV) systems were used to reveal and analyze the flow field characteristics encountered in the sensor design process under steady flow conditions. A 40-watt copper vapor laser was used as a light source. Its beam is focused down to a sheet of light approximately 1.5mm thick. The light scattered off the particles was recorded by a 16mm high speed rotating prism camera at 5000 frames per second. A comparison of the flow patterns and LDV measurements in the original and modified air filter covers is presented to illustrate the controlling effect of the cover design on the turbulence structure formation near the bypass and on the sensor output signal. In both axial and radial planes of the main passage it was found that the turbulence flow pattern is remarkably influenced by the air filter cover and main passage configuration.

  • PDF

Characteristics of High-Speed Railway Tunnel Entry Compression Wave (고속철도 터널입구에서 형성되는 압축파의 특성에 관한 연구)

  • Kim, Heuy-Dong;Kim, Tae-Ho;Lee, Jong-Su;Kim, Dong-Hyeon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.23 no.2
    • /
    • pp.234-242
    • /
    • 1999
  • Flow phenomena such as the pressure transients Inside a high-speed railway tunnel and the Impulsive waves at the exit of the tunnel are closely associated with the characteristics of the entry compression wave, which is generated by a train entering the tunnel. Tunnel entrance hood may be an effective means for alleviating the Impulsive waves and pressure transients. The objective of the current work is to explore the effects of the train nose shape and the entrance hood on the characteristics of the entry compression wave. Numerical calculations using the method of characteristics were applied to one-dimensional, unsteady, compressible flow field with respect to high-speed railway/tunnel systems. Two types of the entrance hoods and various train nose shapes were employed to reveal their influences on the entry compression wave for a wide range of train speeds. The results showed that the entry compression wave length increases as the train nose becomes longer and the train speed becomes lower. The entry compression wave length in the tunnel with hood becomes longer than that of no hood. Maximum pressure gradient in the compression wavefront reduces by the entrance hood. The results of the current work provide useful data for the design of tunnel entrance hood.

A Study on the Performance and Internal Flow Characteristics of a Very Low Specific Speed Centrifugal Pump (극저비속도 원심펌프의 성능과 내부유동특성에 관한 연구)

  • Kurokawa Junichi;Lee Young-Ho;Choi Young-Do
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.29 no.7 s.238
    • /
    • pp.784-794
    • /
    • 2005
  • In the very low specific speed range ($n_s=0.24$ < 0.25, non-dimensional), the efficiency of centrifugal pump designed by a conventional method is very low in common. Therefore, positive-displacement pumps have long been used widely. Recently, since the centrifugal pumps are becoming higher in rotational speed and smaller in size, there expects to develop a new centrifugal pump with a high performance to replace the positive-displacement pumps. The purpose of this study is to investigate the internal flow characteristics of a very low specific speed centrifugal pump and to examine the effect of internal flow pattern on pump performance. The results show that the theoretical head definition of semi-open impeller should be revised by the consideration of high slip factor in the semi-open impeller, and the leakage flow through the tip clearance results in a large effect on the impeller internal flow. Strong reverse flow at the outlet of semi-open impeller reduces the absolute tangential velocity considerably, and the decreased absolute tangential velocity increasese the slip factor with the reduction of theoretical head.

Incompressible Viscous Flow Analysis around a High-Speed Train Including Cross-Wind Effects (측풍영향을 고려한 고속전철 주위의 비압축성 점성 유동 해석)

  • Jung Y. R.;Park W. G.;Kim H. W.;Ha S. D.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 1995.10a
    • /
    • pp.55-63
    • /
    • 1995
  • The flow field around a high-speed train including cross-wind effects has been simulated. This study solves 3-D unsteady incompressible Navier-Stokes equations in the inertial frame using the iterative time marching scheme. The governing equations are differenced with 1st-order accurate backward difference scheme for the time derivatives, 3th-order accurate QUICK scheme for the convective terms and 2nd-order accurate central difference scheme for the viscous terms. The Marker-and-Cell concept was applied to efficiently solve continuity equation, which is differenced with 2nd-order accurate central difference scheme. The 4th-order artificial damping is added to the continuity equation for numerical stability. A C-H type of elliptic grid system is generated around a high-speed train including ground. The Baldwin-Lomax turbulent model was implemented to simulate the turbulent flows. To validate the present procedure, the flow around a high speed train at constant yaw angle of $45^{\circ}\;and\;90^{\circ}$ has been simulated. The simulation shows 3-D vortex generation in the lee corner. The flow separation is also observed around the rear of the train. It has concluded that the results of present study properly agree with physical flow phenomena.

  • PDF