• 제목/요약/키워드: High-Speed Flow

검색결과 1,792건 처리시간 0.037초

광중합 시 수종의 심미적 수복재와 이장재의 사용에 따른 치수내 온도변화 (TEMPERATURE CHANGES IN THE PULP ACCORDING TO VARIOUS ESTHETIC RESTORATIVE MATERIALS AND BASES DURING CURING PROCEDURE)

  • 장혜란;이형일;이광원;이세준
    • Restorative Dentistry and Endodontics
    • /
    • 제26권5호
    • /
    • pp.393-398
    • /
    • 2001
  • Polymerization of light-activated restorations results in temperature increase caused by both the exothermic reaction process and the energy absorbed during irradiation. Within composite resin, temperature increases up to 2$0^{\circ}C$ or more during polymerization. But, insulation of hard tissue of tooth lowers this temperature increase in pulp. However, many clinicians are concerned about intrapulpal temperature injury. The purpose of this study was to evaluate temperature changes in the pulp according to various restorative materials and bases during curing procedure. Caries and restoration-free mandibular molars extracted within three months were prepared Class I cavity of 3$\times$6mm with high speed handpiece fissure bur. 1mm depth of dentin was evaluated with micrometer in mesial and distal pulp horns. Pulp chambers were filled with 37.0$\pm$0.1$^{\circ}C$ water to CEJ. Chromium-alumina thermocouple was placed in pulp horn below restorative materials for evaluating of temperature changes. This thermocouple was connected to temperature-recording device(Multiplication analyzer MX, 6.000, JAPAN). Temperature changes was evaluated from initial 37.$0^{\circ}C$ after temperature changes to 37.$0^{\circ}C$. Tip of curing unit was placed in the center of prepared cavity separated 1mm from restorative materials. Curing time was 40s. The restorative materials were used with Z 100, Fuji II LC, Compoglass flow and bases were used with Vitrebond, Dycal. Resrorative materials were placed in 2mm. The depth of bases were formed in 1mm and in this upper portion, resin of 2mm depth was placed. This procedure was performed 10 times. The results were as follows. 1. All the groups showed that the temperature in pulp increased as curing time increased 2. The temperature increase of glass ionomer was significantly higher than that of Resin and Compomer during curing procedure (P<0.05). 3. The temperature increase in glass ionomer base was significantly higher than that of Calcium hydroxide base during Resin curing procedure (P<0.05).

  • PDF

탄뎀 가스메탈아크 용접공정의 최적화에 관한 실험적 연구 (An Experimental Study on Optimizing for Tandem Gas Metal Arc Welding Process)

  • 이종표;김일수;이지혜;박민호;김영수;박철균
    • Journal of Welding and Joining
    • /
    • 제32권2호
    • /
    • pp.22-28
    • /
    • 2014
  • To enhance productivity and provide high quality production material in a GMA welding process, weld quality, productivity and cost reduction affects the number of process variables. In addition, a reliable welding process and conditions must be implemented to reduce weld structure failure. In various industries the welding process mathematical model is not fully formulated for the process parameter and on the welding conditions, therefore only partial variables can be predicted. The research investigates the interaction between the welding parameters (welding speed, distance between electrodes, and flow rate of shielding gas) and bead geometry for predicting the weld bead geometry (bead width, bead height). Taguchi techniques are applied to bead shape to develope curve equation for predicting the optimized process parameters and quality characteristics by analyzing the S/N ratio. The experimental results and measured error is within the range of 10% presenting satisfactory accuracy. The curve equation was developed in such a way that you can predict the bead geometry of constructed machinery that can be used for making tandem welding process.

차세대 한국형 공용데이터링크 개발을 위한 국·내외 공용데이터링크 기술 동향 분석 (Analysis of Common Data Link Technology Trends for the Next Generation Korean Common Data Link Development)

  • 강위필;송주형;이경훈;이대홍;정성진;최형진
    • 한국통신학회논문지
    • /
    • 제39C권3호
    • /
    • pp.209-222
    • /
    • 2014
  • 현대전의 전쟁 개념은 정보 통신 기술의 발전과 함께 지휘 통제 과정을 네트워크로 연계하여 전투 수행 능력을 향상시키는 네트워크 중심전 (NCW, Network Centric Warfare)으로 변화하고 있다. 이에 따라, 네트워크를 통한 정보의 우위를 점유하는 NCW의 구현에 있어, 감시 정찰 체계로부터 획득한 정보정찰감시 (ISR, Intelligence Surveillance Reconnaissance) 정보의 고속 전송을 위해 개발된 공용데이터링크 (CDL, Common Data Link) 기술이 핵심 요소로 고려되고 있다. 세계 각국에서는 CDL의 전송속도 및 네트워킹 기능을 향상시키기 위한 기술 개발에 주력하고 있으며, 우리 군도 자립적인 CDL 기술 개발의 필요성을 인식하고 MPI-CDL (Multi-Platform Image and Intelligence Common Data Link)을 개발하였다. 하지만 다수 체계 간 대용량 ISR 정보를 신속하게 수집 제공하기에는 최대 전송속도 및 네트워킹 기능 성능이 해외 장비 대비 미흡한 상황으로, 전체적인 성능을 향상시킨 차세대 CDL 개발이 필요한 실정이다. 따라서 본 논문에서는 차세대 한국형 CDL 개발을 위해, 현재까지의 CDL 개발 흐름과 해외 선행 장비의 기술 동향을 살펴보고, 향후 지향해야 할 차세대 CDL 개발 방향에 대해 제시한다.

목포항 출입항로의 환경스트레스 평가에 관한 연구 (A Study on the Assessment of Environment Stress for Incoming and Outgoing Routes in mokpo harbor)

  • 김철승;정재용;정중식;금종수;박영수
    • 해양환경안전학회:학술대회논문집
    • /
    • 해양환경안전학회 2005년도 춘계학술발표회
    • /
    • pp.37-43
    • /
    • 2005
  • 목포항 인근해역은 해상교통량이 많고, 해양사고가 빈발하고 있다. 특히, 목포구에서 목포항까지의 수역에는 협수로 형성, 안개 발생 빈번, 항로 폭 협소, 천수 수역 존재, 양식장 어망 과다, 소형 어선, 여객선, 화물선 등에 의한 특정 시간대 항내 교통량이 집중하여 해양사고가 발생하였다. 따라서 목포항만 수역내 해상안전의 위해요소 및 해상교통환경을 파악하고, 그 문제점을 도출하기 위해 목포항 입출항 항로에 대한 해상교통조사를 실시하여 해상교통흐름을 조사$\cdot$분석하여 교통실태를 파악하고, 통항경로대의 해상교통특성을 도출하여 해상교통류 시뮬레이션을 실시하여 환경스트레스를 평가하고자 한다.

  • PDF

한국전력 스카다 시스템의 네트워크 구조에 대한 연구 (A Study on the Network Architecture for KEPCO SCADA Systems)

  • 여운종
    • 산업진흥연구
    • /
    • 제2권2호
    • /
    • pp.1-6
    • /
    • 2017
  • 한국전력의 전력을 생산, 수송, 공급하는 3가지 업무분야 중 수송부분을 관리하는 서울전력관리처에 SCADA (Supervisery Control And Data Acquisition) System이 1980년 처음 도입된 후 중앙급전소, 지역급전소, 변전소 업무를 EMS, SCADA, RTU 컴퓨터 설비 3계층의 1:N 식 방사상 형태로 구성하여 HARRIS 6000, BSC, HDLC, L&N, 도시바 등 5개 Protocol로 1200 bps와 9600 bps로 Data Link를 이용하여 왔다. 본 연구는 OSI표준네트워크패킷흐름을 도시하여 DataLink와 Network Layer를 분석하고, 네트워크 3계층을 사용하는 X.25 고속 통신망으로 구성된 한국전력 SCADA 네트워크 모델을 제시하였으며, 통신망을 시험 평가하였다. 현재의 스카다 통신구조를 개선한 미래 스카다 통신구조를 제시하고, SCADA DB 구조를 정의하고, 스카다 기능 구조에 원격 SCADA 게이트웨이 개념을 도입 표준 통신프로토콜을 적용 하였다. 따라서 데이터 전송시간 제약완화, 타지역 타 설비에서의 감시 및 제어의 다중화 및 통신 개방성을 확보하도록 하였다.

고양력장치 설계 최적화 및 풍동시험 (High Lift Device Design Optimization and Wind Tunnel Tests)

  • 이융교;김철완;조태환
    • 항공우주기술
    • /
    • 제9권1호
    • /
    • pp.78-83
    • /
    • 2010
  • 본 연구에서는 높은 양력을 얻기 위하여 플랩 형상 최적 설계를 시도하였다. 플랩 형태는 플랩 중에서 가장 효율이 좋은 파울러 플랩(fowler flap)이다. 플랩 설계는 최적화 기법을 활용하여 진행하였고 최적화의 초기 형상은 general aviation airfoil과 Wentz 등이 개발한 플랩이다. 최적화 방법으로는 반응면 기법 (Response Surface Method)이 사용되었으며, Hicks-Henne 형상함수가 사용되었고, GA(W)-1 익형과 fowler flap이 조합된 형상의 유동장에 대하여 Navier-Stokes 해석을 수행하였다. 상용 최적화 프로그램인 Visual-Doc, 격자 생성 프로그램인 Gambit/Tgrid, 그리고 유동해석에는 Fluent를 이용하였다. 플랩의 윗면 형상과 gap에 대한 최적화를 수행하여 착륙조건에서의 양력이 증가하였다. 초기 형상과 최적화된 형상의 공력특성 변화를 관찰하기 위하여 항우연의 1m 풍동에서 시험을 수행하였다. 최적화된 형상은 대체로 예측치와 비슷한 경향을 보이나, 이른 실속이 관찰되었다. 또한, 날개와 플랩 간의 간격을 설계치보다 좁혀 줌으로써 양력특성이 향상됨을 알 수 있었는데, 이는 설계시 사용된 난류 모델의 영향이라 판단된다.

동시냉난방 열펌프의 전열회수 성능 특성에 관한 연구 (Experimental Study on the Performance of a Simultaneous Heating and Cooling Heat Pump in the Heat Recovery Mode)

  • 최종민;정현준;주영주;강훈;김용찬
    • 설비공학논문집
    • /
    • 제20권11호
    • /
    • pp.718-726
    • /
    • 2008
  • The cooling load in winter is significant in buildings and hotels because of the usage of office equipments and the high efficiency of wall insulation. Hence, the development of a multi-heat pump that can cover heating and cooling simultaneously for each indoor unit is required. In this study, the performance of a simultaneous heating and cooling heat pump was investigated in the heat recovery mode (HR mode). The system adopted a variable speed compressor using R410A with four indoor units and one outdoor unit. In the HR mode, the capacity and COP were improved as compared with those in the cooling or heating mode because the waste heat in the outdoor unit was utilized as useful heat in the indoor units. However, energy imbalance between heating and cooling capacity of each indoor unit was observed in the 2H-1C HR mode. Therefore, the performance of the system in the 2H-1C HR mode was enhanced by controlling refrigerant flow rate through the outdoor unit.

Non-contact Transportation of Flat Panel Substrate by Combined Ultrasonic Acoustic Viscous and Aerostatic Forces

  • Isobe, Hiromi;Fushimi, Masaaki;Ootsuka, Masami;Kyusojin, Akira
    • International Journal of Precision Engineering and Manufacturing
    • /
    • 제8권2호
    • /
    • pp.44-48
    • /
    • 2007
  • In recent years, the size of plane substrates and semiconductor wafers has increased. As conventional contact transportation systems composed of, for example, carrier rollers, belt conveyers, and robot hands carry these longer and wider substrates, the increased weight results in increased potential for fracture. A noncontact transportation system is required to solve this problem. We propose a new noncontact transportation system combining acoustic viscous and aerostatic forces to provide damage-free transport. In this system, substrates are supported by aerostatic force and transported by acoustic viscous streaming induced by traveling wave deformation of a disk-type stator. A ring-type piezoelectric transducer bonded on the stator excites vibration. A stator with a high Q piezoelectric transducer can generate traveling vibrations with amplitude of $3.2{\mu}m$. Prior to constructing a carrying road for substrates, we clarified the basic properties of this technique and stator vibration characteristics experimentally. We constructed the experimental equipment using a rotational disk with a 95-mm diameter. Electric power was 70 W at an input voltage of 200 Vpp. A rotational torque of $8.5\times10^{-5}Nm$ was obtained when clearance between the stator and disk was $120{\mu}m$. Finally, we constructed a noncontact transport apparatus for polycrystalline silicon wafers $(150(W)\times150(L)\times0.3(t))$, producing a carrying speed of 59.2 mm/s at a clearance of 0.3 mm between the stator and wafer. The carrying force when four stators acted on the wafer was $2\times10^{-3}N$. Thus, the new noncontact transportation system was demonstrated to be effective.

곡물(穀物) 건조기(乾燥機)의 배기열(排気熱) 재이용(再利用) 및 열효율(熱効率) 개선(改善)에 관(關)한 연구(硏究) (Reuse of Exhaust Heat and Improvement in Fuel Efficiency of Grain Dryer)

  • 금동혁;이용국;이규승;한종호
    • Journal of Biosystems Engineering
    • /
    • 제9권2호
    • /
    • pp.65-73
    • /
    • 1984
  • While most of researches on the performance of high temperature grain dryer have dealt mainly with improving dryer capacity and drying speed during the last twenty years, energy efficiency, in fact, has not been emphasized. Current fuel supplies and energy cost have shifted the emphasis to reducing the energy consumption for grain drying while maintaining dryer capacity and grain quality. Since the energy input for drying is relatively large, the recovery and reuse of at least part of the exhaust energy can significantly reduce the total energy consumption in existing drying systems. Unilization of exhaust heat in grain dryer either through direct recycling or by a thermal coupling in heat exchanger have been subject of a number of investigators. However, very seldom research in Korea has been done in this area. Three drying tests(non-recycling, 0.22 recycle ratio, and 0.76 recycle ratio)were performed to investigate the thermal efficiency and heat loss factors of continuous flow type dryer, and to analyze the effect of recycle ratio (weight of exhaust air recycled/total weight of input air) on the energy requriements for rough rice drying. The test results showed that when the exhaust air was not recycled, the energy lost from furnace was 15.3 percent of input fuel energy, and latent and sensible heat of exhaust air were 61.4 percent and 11.2 percent respectively. The heat which was required in raising grain temperature and stored in dryer was relatively small. As the recycle ratio of exhaust air was increased, the drying rate was suddenly decreased, and thermal efficiency of the kerosene burner was also decreased. Drying test with 0.76 recycle ratio resulted in 12.4% increase in fuel consumption, and 38.4% increase in electric power consumption as compared to the non-recycled drying test. Drying test of 0.22 recycle ratio resulted in 6.8% saving in total energy consumption, 8.0% reduction in fuel consumption, and 2.5% increase in electric power consumption as compared to the non-recycled drying test.

  • PDF

직분식 CNG 엔진에서 연료 분사시기의 변화가 연소 및 출력 특성에 미치는 영향 (The Effect of Fuel Injection Timing on Combustion and Power Characteristics in a DI CNG Engine)

  • 강정호;윤수한;이중순;박종상;하종률
    • 한국자동차공학회논문집
    • /
    • 제15권1호
    • /
    • pp.193-200
    • /
    • 2007
  • Natural gas is one of the most promising alternatives to gasoline and diesel fuels because of its lower harmful emissions, including $CO_2$, and high thermal efficiency. In particular, natural gas is seen as an alternative fuel for heavy-duty Diesel Engines because of the lower resulting emissions of PM, $CO_2$ and $NO_x$. Almost all CNG vehicles use the PFI-type Engine. However, PFI-type CNG Engines have a lower brake horse power, because of reduced volumetric efficiency and lower burning speed. This is a result of gaseous charge and the time losses increase as compared with the DI-type. This study was conducted to investigate the effect of injection conditions (early injection mode, late injection mode) on the combustion phenomena and performances in the or CNG Engine. A DI Diesel Engine with the same specifications used in a previous study was modified to a DI CNG Engine, and injection pressure was constantly kept at 60bar by a two-stage pressure-reducing type regulator. In this study, excess air ratios were varied from 1.0 to the lean limit, at the load conditions 50% throttle open rate and 1700rpm. The combustion characteristics of the or CNG Engine - such as in-cylinder pressure, indicated thermal efficiency, cycle-by-cycle variation, combustion duration and emissions - were investigated. Through this method, it was possible to verify that the combustion duration, the lean limit and the emissions were improved by control of injection timing and the stratified mixture conditions. And combustion duration is affected by not only excess air ratio, injection timing and position of piston but gas flow condition.