• 제목/요약/키워드: High-Response Vector Control

검색결과 98건 처리시간 0.029초

High Performance Adjustable-Speed Induction Motor Drive System Incorporating Sensorless Vector Controlled PWM Inverter with Auto-Tuning Machine-Operated Parameter Estimation Schemes

  • Soshin, Koji;Okamura, Yukiniko;Ahmed, Tarek;Nakaoka, Mutsuo
    • Journal of Power Electronics
    • /
    • 제3권2호
    • /
    • pp.99-114
    • /
    • 2003
  • This paper presents a feasible development on a highly accurate quick response adjustable speed drive implementation fur general purpose induction motor which operates on the basis of sensorless slip frequency type vector controlled sine-wave PWM inverter with an automatic tuning machine parameter estimation schemes. In the first place, the sensorless vector control theory on the three-phase voltage source-fed inverter induction motor drive system is developed in slip frequency based vector control principle. In particular, the essential procedure and considerations to measure and estimate the exact stator and rotor circuit parameters of general purpose induction motor are discussed under its operating conditions. The speed regulation characteristics of induction motor operated by the three-phase voltage-fed type current controlled PWM inverter using IGBT's is illustrated and evaluated fur machine parameter variations under the actual conditions of low frequency and high frequency operations for the load torque. In the second place, the variable speed induction motor drive system, employing sensorless vector control scheme which is based on three -phase high frequency carrier PWM inverter with automatic toning estimation schemes of the temperature -dependent and -independent machine circuit parameters, is practically implemented using DSP-based controller. Finally, the dynamic speed response performances for largely changed load torque disturbances as well as steady state speed vs. torque characteristics of this induction motor control implementation are illustrated and discussed from an experimental point of view.

벡터제어 시스템에 의한 유도 전동기의 속응제어와 토오크 특성에 관한 연구 (A Study on torque characteristics and rapid response control of induction motor by vector control system)

  • 황락훈;장은성;남우영;조상로;신양호;조문택;이춘상;나승권
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2003년도 춘계전력전자학술대회 논문집(2)
    • /
    • pp.807-811
    • /
    • 2003
  • In this paper, the speed control system of induction motor was proposed using vector control algorithm and space voltage vector PWM method to improve the dynamic performance of Induction motor. The control system is composed of the PI controller for speed control and the current controller using space voltage vector PWM technique. The high-speed calculation and processing for vector control is carried out by TMS320C31 digital signal processor and IGBT module. The proposed scheme is verified through digital simulations and experiments for 3.7[kw] induction motor and shows good dynamic performance.

  • PDF

Force Control of Hybrid Actuator using Learning Vector Quantization Neural Network

  • Ahn, Kyoung-Kwan;Thai Chau, Nguyen Huynh
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2005년도 ICCAS
    • /
    • pp.290-295
    • /
    • 2005
  • Hydraulic actuators are important in modern industry due to high power, fast response, and high stiffness. In recent years, hybrid actuation system, which combines electric and hydraulic technology in a compact unit, can be adapted to a wide variety of force, speed and torque requirements. Moreover, the hybrid actuation system has dealt with the energy consumption and noise problem existed in the conventional hydraulic system. Therefore, hybrid actuator has a wide range of application fields such as plastic injection-molding and metal forming technology, where force or pressure control is the most important technology. In this paper, the solution for force control of hybrid system is presented. However, some limitations still exist such as deterioration of the performance of transient response due to the variable environment stiffness. Therefore, intelligent switching control using Learning Vector Quantization Neural Network (LVQNN) is newly proposed in this paper in order to overcome these limitations. Experiments are carried out to evaluate the effectiveness of the proposed algorithm with large variation of stiffness of external environment. In addition, it is understood that the new system has energy saving effect even though it has almost the same response as that of valve controlled system.

  • PDF

Force Control of Hybrid Actuator Using Learning Vector Quantization Neural Network

  • Aan Kyoung-Kwan;Chau Nguyen Huynh Thai
    • Journal of Mechanical Science and Technology
    • /
    • 제20권4호
    • /
    • pp.447-454
    • /
    • 2006
  • Hydraulic actuators are important in modern industry due to high power, fast response, and high stiffness. In recent years, hybrid actuation system, which combines electric and hydraulic technology in a compact unit, can be adapted to a wide variety of force, speed and torque requirements. Moreover, the hybrid actuation system has dealt with the energy consumption and noise problem existed in the conventional hydraulic system. Therefore, hybrid actuator has a wide range of application fields such as plastic injection-molding and metal forming technology, where force or pressure control is the most important technology. In this paper, the solution for force control of hybrid system is presented. However, some limitations still exist such as deterioration of the performance of transient response due to the variable environment stiffness. Therefore, intelligent switching control using Learning Vector Quantization Neural Network (LVQNN) is newly proposed in this paper in order to overcome these limitations. Experiments are carried out to evaluate the effectiveness of the proposed algorithm with large variation of stiffness of external environment. In addition, it is understood that the new system has energy saving effect even though it has almost the same response as that of valve controlled system.

단상 PWM 컨버터에 적용한 공간 벡터 PWM (Adaptation of Space Vector Modulation to Single-Phase High Power PWM Converters)

  • 이희면;이동명
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2011년도 전력전자학술대회
    • /
    • pp.442-443
    • /
    • 2011
  • In this paper, a voltage control method based on DQ transformation and Space Vector Pulse Width Modulation (SVPWM) for a single phase three-level converter is proposed. This control method is designed to use DC values instead of using instantaneous values of current which are usually used in single-phase application, so that it results in a fast and robust voltage control response. Simulation results demonstrate the validity of the control strategies.

  • PDF

파라미터 적응동정에 의한 유도전동기의 중.저속운정 과도특성개선 (Improvement of Transient Characteristics at middle and low Speed Region of induction Motor using Adaptive identification)

  • 이성근
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제23권6호
    • /
    • pp.738-747
    • /
    • 1999
  • Vector controlled induction motor have been widely used in high performance applications. How-ever the performance is sensitive to the variations of motor parameters especially the rotor time constant which varies with the temperature and the saturation of the magnetizing inductance. In this paper the authors propose new identifying method for time-varying parameters of an induction motor which is based on adaptive vector control with serial block algorithm. Vector con-trol system realized on synchronous frame and parameter identification system realized on sta-tionary frame are not easily affected by the vector control frame. Parameter mismatch in the control system results in heavy transient variation in speed and torque response. In order to compensate degradation of the responses at the middle and low speed region adaptive identifier is introduced. To verify the feasibility of this technique compute simu-lations carried out.

  • PDF

공간전압벡터 PWM 전류제어방식에 의한 유도전동기 서보운전 (Servo Drive of Induction Motor Using Space Voltage Vector PWM Current Control Method)

  • 서영수;성대용;하종욱;차광훈;김영춘
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1996년도 하계학술대회 논문집 A
    • /
    • pp.467-469
    • /
    • 1996
  • In this paper, the voltage equation of the stationary reference frame was reduced in squirrelcage induction motor using vector control algorithm, and changed that of the d-q synchronously rotating reference frame, so the torque equation was reached, and propose vector control algorithm for speed control. Also the real time control was possibled using DSP(TMS320C31) to experiment system which show high accuracy speed response characteristics by liner current control using space voltage vector PWM method.

  • PDF

dSPACE 1104 시스템을 이용한 영구자석 동기전동기 벡터제어 구현 (Vector Control Implementation of PMSM Using dSPACE 1104 System)

  • 이용석;이동민;지준근;차귀수
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2007년도 제38회 하계학술대회
    • /
    • pp.1084-1085
    • /
    • 2007
  • This paper presents a vector control implementation for SPMSM(Surface-mounted Permanent Magnet Synchronous Motor) using dSPACE 1104 system and MATLAB/SIMULINK. SPMSM can be treated as a DC motor provided that currents of flux and torque component are controlled independently using vector control. Therefore various control algorithms for conventional DC motor control can be adopted to SPMSM. The system is designed to improve set-point tracking capability, fast response, and accuracy. In This paper, d-q equivalent modeling of PMSM is derived based on vector control theory. The PI controller is used for speed control and state feedback PI current control method is used for current control. For the implementation of high performance vector control system, dSPACE 1104 system is used. Simulations and experiments were carried out to examine validity of the proposed vector control implementation.

  • PDF

고정자 전류벡터를 이용한 리럭턴스 동기전동기의 직접토크제어 (A Direct Torque Control of Reluctance Synchronous Motor with Stator Current Space Vector)

  • 김남훈;김민회;백원식;김동희;황돈하
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2002년도 전력전자학술대회 논문집
    • /
    • pp.293-296
    • /
    • 2002
  • This paper presents an implementation of Direct torque control(DTC) of Reluctance Synchronous Motor(RSM) drives for an industrial servo drive system with stator current space vector. The estimation of the stator flux magnitude are obtained by using the neural network from measuring the modulus and angle of the stator current space vector. The develolled digitally high-performance control system are shown a good response characteristic of control results and high performance features using 1.0kW RSM.

  • PDF

가변구조제어 이론을 이용한 유도 서보 전동기의 위치제어 (Position Control for Induction Servo Motors Using a Theory of Variable Structure Control)

  • 홍순일;홍정표
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제29권1호
    • /
    • pp.132-139
    • /
    • 2005
  • This paper describes the application of sliding mode control based on the variable structure control(VSC) concept for high-performance position control of an induction servo motor A design method based on external load parameters has been developed for the robust control of AC induction servo drive. Also, a slip frequency vector control with software current control technique has been adopted to achieve fast response of an induction motor drive The position control scheme is comprised of a variable structure controller and slip frequency vector control for inverter fed induction servo motor. Simulated results are given to verify the proposed design method by adoption of sliding mode and show robust control for a change of shaft inertia, viscous friction and torque disturbance.