• 제목/요약/키워드: High-Resistant alloy

검색결과 101건 처리시간 0.023초

AlSi12 분말의 직접 레이저 용융 적층 시 공정 조건에 따른 적층 특성에 관한 연구 (Study on Effects of Direct Laser Melting Process Parameters on Deposition Characteristics of AlSi12 powders)

  • 서자예;윤희석;이기용;심도식
    • 소성∙가공
    • /
    • 제27권5호
    • /
    • pp.314-322
    • /
    • 2018
  • AlSi12 is a heat-resistant aluminum alloy that is lightweight, corrosion-resistant, machinable and attracting attention as a functional material in aerospace and automotive industries. For that reason, AlSi12 powder has been used for high performance parts through 3D printing technology. The purpose of this study is to observe deposition characteristics of AlSi12 powder in a direct energy deposition (DED) process (one of the metal 3D printing technologies). In this study, deposition characteristics were investigated according to various process parameters such as laser power, powder feed rate, scan speed, and slicing layer thickness. In the single track deposition experiment, an irregular bead shape and balling or humping of molten metal were formed below a laser power of 1,000 W, and the good-shaped bead was obtained at 1.0 g/min powder feed rate. Similar results were observed in multi-layer deposition. Observation of deposited height after multi-layer deposition revealed that over-deposition occurred at all conditions. To prevent over-deposition, slicing layer thickness was experimentally determined at given conditions. From these results, this study presented practical conditions for good surface quality and accurate geometry of deposits.

활성 납재를 이용한 질화규소/탄소강 접합 (Joining of Silicon Nitride to Carbon Steel using an Active Metal Alloys)

  • 최영민;정병훈;이재도
    • 한국재료학회지
    • /
    • 제9권2호
    • /
    • pp.199-204
    • /
    • 1999
  • As the engine design change to get high efficiency and performance of commercial diesel engine, surface wear of the cam follower becomes an important issues as applied load increasing at the contact face between cam follower and cam. Purpose of this study is the developing of the ceramic cam follower made of silicon nitride ceramic which is more wear resistant than the cast iron and sintered cam follower. Ceramic cam follower was made by direct brazing of thin ceramic disk to steel can follower body using active bracing alloy. Effect of joining condition on the interfacial phases and joining strength wer examined at bvarious joining temperatures, times, and cooling rates. Crowning resulted from the difference of thermal expansion coefficient after direct brazing without using any stress-relieving inter layer was measured. Interfacial phases are mainly titanium silicide and titanium nitride which are the products between active metal(Ti) in brazing alloy and silicon nitiride. Maximum joining strength of the ceramic metal joint, measured by DBS method, was 334MPa. Crowning(R) of the prototype ceramic cam follower was 1595mm. As machining for crowning is not necessary, production cost can be reduced.

  • PDF

Ti-10wt.%Al-xMn 분말합금의 Mn첨가에 따른 소결특성 평가 (Effect of Mn Addition on Sintering Properties of Ti-10wt.%Al-xMn Powder Alloy)

  • 신기승;현용택;박노광;박용호;이동근
    • 한국분말재료학회지
    • /
    • 제24권3호
    • /
    • pp.235-241
    • /
    • 2017
  • Titanium alloys have high specific strength, excellent corrosion and wear resistance, as well as high heat-resistant strength compared to conventional steel materials. As intermetallic compounds based on Ti, TiAl alloys are becoming increasingly popular in the aerospace field because these alloys have low density and high creep properties. In spite of those advantages, the low ductility at room temperature and difficult machining performance of TiAl and $Ti_3Al$ materials has limited their potential applications. Titanium powder can be used in such cases for weight and cost reduction. Herein, pre-forms of Ti-Al-xMn powder alloys are fabricated by compression forming. In this process, Ti powder is added to Al and Mn powders and compressed, and the resulting mixture is subjected to various sintering temperature and holding times. The density of the powder-sintered specimens is measured and evaluated by correlation with phase formation, Mn addition, Kirkendall void, etc. Strong Al-Mn reactions can restrain Kirkendall void formation in Ti-Al-xMn powder alloys and result in increased density of the powder alloys. The effect of Al-Mn reactions and microstructural changes as well as Mn addition on the high-temperature compression properties are also analyzed for the Ti-Al-xMn powder alloys.

니켈기 초내열합금의 파형 결정립계 구조가 보론 편석과 재현 열영향부 액화균열거동에 미치는 영향 (Effects of Serrated Grain Boundary Structures on Boron Enrichment and Liquation Cracking Behavior in the Simulated Weld Heat-Affected Zone of a Ni-Based Superalloy)

  • 홍현욱;최준우;배상현;윤중근;김인수;최백규;김동진;조창용
    • Journal of Welding and Joining
    • /
    • 제31권3호
    • /
    • pp.31-38
    • /
    • 2013
  • The transition of serrated grain boundary and its effect on liquation behavior in the simulated weld heat-affected zone (HAZ) have been investigated in a wrought Ni-based superalloy Alloy 263. Recently, the present authors have found that grain boundary serration occurs in the absence of adjacent coarse ${\gamma}^{\prime}$ particles or $M_{23}C_6$ carbides when a specimen is direct-aged with a combination of slow cooling from solution treatment temperature to aging temperature. The present study was initiated to determine the interdependence of the serration and HAZ property with a consideration of this serration as a potential for the use of a hot-cracking resistant microstructure. A crystallographic study indicated that the serration led to a change in grain boundary character as special boundary with a lower interfacial energy as those terminated by low-index {111} boundary planes. It was found that the serrated grain boundaries are highly resistant to boron enrichment, and suppress effectively grain coarsening in HAZ. Furthermore, the serrated grain boundaries showed a higher resistance to susceptibility of liquation cracking. These results was discussed in terms of a significant decrease in interfacial energy of grain boundary by the serration.

Effect of Microstructure on Hydrogen Induced Cracking Resistance of High Strength Low Alloy Steels

  • Koh, Seong Ung;Jung, Hwan Gyo;Kim, Kyoo Young
    • Corrosion Science and Technology
    • /
    • 제6권4호
    • /
    • pp.164-169
    • /
    • 2007
  • Hydrogen induced cracking (HIC) was studied phenomenologically and the effect of microstructure on HIC was discussed for the steels having two different levels of nonmetallic inclusions. Steels having different microstructures were produced by thermomechanically controlled processes (TMCP) from two different heats which had the different level of nonmetallic inclusions. Ferrite/pearlite (F/P), ferrite/acicular ferrite (F/AF), ferrite/bainite (F/B) were three representative microstructures for all tested steels. For the steels with higher level of inclusions, permissible inclusion level for HIC not to develop was different according to steelmicrostructure. On the contrary, HIC occurred also at the martensite/austenite (M/A) constituents regardless of steel microstructure when they accumulated to a certain degree. It was proved that M/A constituents were easily embrittled by hydrogen atoms. Steels having F/AF is resistant to HIC at a given actual service condition since they covers a wide range of diffusible hydrogen content without developing HIC.

외부 공기속도 변화에 따른 소결마찰재와 디스크간 마찰특성 (Influence of External Air Velocity for Tribological Characteristics between Sintered Friction Material and Disk)

  • 이종성;이희성
    • Tribology and Lubricants
    • /
    • 제29권1호
    • /
    • pp.19-26
    • /
    • 2013
  • Cu-matrix sintered brake pads and low-alloy heat-resistant steel are commonly applied to basic brake systems in high-energy moving machines. In this research, we analyzed the tribological characteristics to determine the influence of the air velocity between the disk and pad. At a low brake pressure with airflow, the friction stability was decreased as a result of the lack of tribofilm formation at the disk surface. However, there were no significant changes in the friction coefficient under any of the test conditions. The wear rates of the friction materials were decreased with an increase in the airflow velocity. As a result, the airflow velocity influenced the friction stability, as well as the wear rate of the friction materials and disk, but not the friction coefficient.

자동차용 전기도금강재의 도금재착항별 품질생성 (Effect of Coating Weight of Electroplated Sheet Steels on Quality Performances for Automotive Body Panels)

  • 김태영;진영술
    • 한국표면공학회지
    • /
    • 제25권2호
    • /
    • pp.57-65
    • /
    • 1992
  • Increasing demands of high corrosion resistant sheet steels for the automotive body panels have been leading to a tendency toward heavier coatings of electroplated sheet steels. The specimens were prepared from lab-scale electroplating simulator with various coating weights of zinc, zinc-iron and zinc-nickel coated sheet steels and evaluated in the light of the application for the automotive body panels. Corrosion resistances by sacrificial action were improved with increasing coating weights for all electroplated sheet under survey, but blistering resistances of pure zinc coated sheet steels were not as much. On the other hand, the adhesions of heavy alloy coatings showed poor powdering performances by the external compressive or tensile forces.

  • PDF

Thermal Shock Resistance of Bilayered YSZ Thermal Barrier Coating

  • Lee, Dong Heon;Kim, Tae Woo;Lee, Kee Sung;Kim, Chul
    • 한국세라믹학회지
    • /
    • 제55권5호
    • /
    • pp.452-460
    • /
    • 2018
  • This study investigate changes in mechanical behaviors such as indentation load-displacement and hardness of thermal barrier coatings (TBCs) using cycling of thermal shock test. Relatively dense and porous TBCs on nickel-based bondcoat/super alloy are prepared using different starting granules, 204C-NS and 204NS commercial powers, and the effect of double layers of 204C-NS on 204NS and 204NS on 204C-NS are investigated. The highest temperature applied during thermal shock test is $1100^{\circ}C$ and the maximum number of cycles is 1,200. The results indicate that bilayered TBC showed a relatively mechanically resistant property during thermal shock cycles and that the mechanical behavior is influenced by the microstructure of TBCs by exposure to high temperature during tests or different starting granules.

바이오에탄올 연료에 대한 FFV(Flexible Fuel Vehicle)용 연료펌프모터의 내구성에 관한 연구 (A Study of Fuel Pump Durability on the Bio-ethanol for FFV(Flexible Fuel Vehicle) System)

  • 김창수;곽동호;정병준;김종명
    • 한국자동차공학회논문집
    • /
    • 제19권6호
    • /
    • pp.107-112
    • /
    • 2011
  • FFV(Flexible Fuel Vehicle) is the vehicle that can be used liberally from gasoline to E100(Ethanol 100%) for fuel. Recently, interest in the bio-fuel is increased by the environmental factors like exhaustion of the fossil fuel and ruduction of greenhouse gases. For the reason, adopting of FFV is activated in the world including North and South America. In general, bio-ethanol has highly corrosive substance in compare with gasoline. In the part of fuel system, corrosion can make a safety problem in case of fuel leakage and engine starting problem. So the fuel system of FFV have to be made of high corrosion-resistant materials. This study examined the effect of bio-ethanol on the durability properties according to component materials in FFV fuel pump motor and regulator using the High Temperature Fuel Circulation Test.

실험계획법을 이용한 인서트 종류에 따른 Inconel 718 선삭가공조건 최적화 (Optimization of the Turning Conditions of Inconel 718 according to Insert Materials using DOE)

  • 신필선;김재경;전의식
    • 한국기계가공학회지
    • /
    • 제21권8호
    • /
    • pp.1-8
    • /
    • 2022
  • Inconel 718 is nickel-based and is increasingly being used as a key component in the nuclear, aerospace, and chemical industries which require high fatigue strength and oxidation, because of its excellent corrosion resistance, heat resistance, and wear resistance. It is a heat-resistant alloy which has excellent mechanical properties; however, material deformation, cracking, and shaking occur because of the high cutting temperature accumulated on the cutting surface during cutting processing, and heat accumulated at the insert boundary. Owing to these characteristics, various studies have been conducted, such as developing a tool exclusively for non-deletion, analyzing tool wear, and developing a tool cooling system. However, the optimization of the cutting process is still insufficient. In this study, the optimal process conditions were derived experimentally by cutting conditions according to the insert type during the cutting of Inconel 718.