• Title/Summary/Keyword: High-Pressure Test

Search Result 2,319, Processing Time 0.03 seconds

Experimental Study on the Calibration of Bi-directional High Pressure Pile Load Test (양방향 고유압 말뚝재하시험장치의 보정에 관한 실험적 연구)

  • Choi, Yongkyu
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.5C
    • /
    • pp.303-311
    • /
    • 2008
  • In the case of bi-directional high pressure pile load test with double-acting jack, the shortcomings of bi-directional pile load test with single-acting jack could be solved, low-cost of test could be sure, the limits of loading capacity could be overcome and quality assurance of service plie could be confirmed. In this study, to confirm the stability, the reliability and the application of bi-directional high pressure pile load test with double-acting jack, the calibration test for high pressure oil jacks, the length of high pressure hose and tunable high pressure pipe system were performed. As a result, credibility was very high because the reliability of test results was approached at about 1.0.

Manufacture of High-temperature High-pressure Vessel for Mixed Gas Performance Test via Optimized Design (최적화 설계를 통한 혼합가스 성능시험용 고온 고압 용기의 제작)

  • Ku, Hyoun-Kon;Ryu, Hyung-Min;Ahn, Jae-Woong;Bae, Young-Gwan;Kim, Jin-Hee
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.18 no.11
    • /
    • pp.83-88
    • /
    • 2019
  • In this study, the high-temperature high-pressure vessel was successfully manufactured, which can be used to store pressurized air and to increase the temperature for the mix performance test of high-temperature high-pressure air with coolant (e.g., water). In this research, static structure analysis and transient thermal analysis were performed using the commercial software Midas NFX 2015 R1. Based on the results, the optimized pressure vessel design was carried out. As a result of the optimized design, the minimum stress and minimum weight were found at 120 mm of the vessel thickness, and the optimized pressure vessel was verified. Finally, through manufacture and performance test (e.g., the non-destructive inspection and hydraulic pressure test), the reliability and safety were validated for the designed pressure vessel.

A Study on the Air Pressure Endurance Test Device for High Speed Train Windows (고속철도차량 객차창문의 공기압력내구성 시험장치 개발에 관한 연구)

  • Chang, Dae-Sung;Yi, Won
    • Journal of the Korean Society for Railway
    • /
    • v.15 no.2
    • /
    • pp.104-108
    • /
    • 2012
  • All of the Korean high speed train windows have been imported from abroad up to now. In this paper, the air pressure endurance test device for high speed train windows was studied and developed. This test device can create air pressure variation similar to train running real condition and carry out pressure endurance test according to international standard. Henceforward, this test device will be useful for domestic production of high speed train windows.

Case Study of Flexural Strength Evaluation of Epoxy Injected Concrete Using Low Pressure Mixed with Mechanical High Pressure (기계식 고압과 저압을 혼용한 에폭시 주입 콘크리트의 휨강도 검토 사례 연구)

  • Hong, Ki-Nam;Yu, Yeon-Jong;Lee, Kang-Moon;Ryu, Chang-Yeol;Yoon, Hong-Su
    • Journal of the Korean Society of Safety
    • /
    • v.27 no.1
    • /
    • pp.49-54
    • /
    • 2012
  • The objective of this study is to investigate the capacity of epoxy injection method using low pressure mixed with high pressure. Injection depth test and flexural strength test were respectively performed on $40{\times}45{\times}35$ cm and $100{\times}10{\times}40$ cm specimens. Considered as the test variables were injection type(low pressure, low and high pressure), crack width(0.25 mm, 0.50 mm), injection direction(upper, lower, side), and epoxy viscosity(low, medium, high). Test results showed that low viscosity epoxy injection depth of injector using low pressure mixed with high pressure for upper direction were 23 cm and tension strength of crack face repaired by injector using low pressure mixed with high pressure was larger than that of concrete.

The Development of High Pressure Long Distance Fire-fighting Hose with Phosphorescent Performance (축광 성능을 갖는 고압용 장거리 호스 개발에 관한 연구)

  • Han, Yong-Taek;Na, Byung-Gyun;Choi, Jin-Seong;Min, Se-Hong
    • Fire Science and Engineering
    • /
    • v.31 no.5
    • /
    • pp.63-69
    • /
    • 2017
  • This study describes the development of a long-distance hose for ultra-high pressure operation, which can be used in conjunction with an ultra-high pressure pump and can be effectively applied to the fire suppression of high-rise buildings and a long, large tunnels. Also, it has phosphorescent properties, which can help to secure the withdrawal route of the fire-fighters when they are threatened by the fire. We developed an ultra-high pressure hose aiming at a pressure of 3 MPa and a flow rate of 2000 lpm and developed an ultra-high pressure fire hose that can withstand this very high pressure by using a double jacket, triple polyurethane coating and warf (Wp) of 52. In order to ensure the performance of the developed ultra-high pressure hose, its structure, appearance, leakage at high pressure, length and elongation were inspected by a certified certification agency, who also subjected it to a peeling test, friction test, breaking pressure test and free fall test. Also, it was studied in addition to the luminescent high-pressure hose for fire-fighting. In the phosphorescence test, the luminance measurement value was more than the reference value of the luminance test after 40 minutes, which confirmed that its performance was satisfactory for fire-fighting products. In the future, if such an ultra-high pressure fire hose were commercialized and applied in the field, it could contribute to securing improved fire suppression and safer exit from fires, as compared to the fire hoses currently used in the suppression of fires in skyscraper buildings and long tunnels.

A study on the pressure test of the glass window for high speed train (고속철도차량용 창문유리의 압력시험에 관한 연구)

  • Chang, Dae-Sung;Lee, Heung-Jae;Yi, Won
    • Proceedings of the KSR Conference
    • /
    • 2011.05a
    • /
    • pp.295-300
    • /
    • 2011
  • In this paper, the pressure endurance test of passenger glass window which was developed for next high speed train was studied. At first, pressure test equipment which will be able to generate the maximum pressure same as crossing between two trainsets in the tunnel was developed. Afterwards the pressure test and evaluation that were based on NFF31-314 were studied and carried out.

  • PDF

A Study on the Mechanical Method of Observing Winding Behavior by Charging and Discharging of Type II High Pressure Hydrogen Storage Tank (Type II 고압수소저장용기의 충전과 방출에 의한 권선 거동 관찰의 기계적 방법에 관한 연구)

  • KIM, SEUNGHWAN;HAN, JINMOOK;LEE, SUNGHEE;JUNG, YOUNGGUAN
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.33 no.2
    • /
    • pp.158-163
    • /
    • 2022
  • The test method on the Type II high-pressure hydrogen storage tanks made of the metal wire hoop winding is a complex and high risk. Also closeup on the tank being test is difficult. In this study, we studied a mechanical test method for a high-pressure hydrogen tanks. This method must be simple, risk-free and possible to observe the change in microscopic behavior of a metal wire on a liner. As the results, it was possible to observe the microscopic behavior on the metal wire by the mechanical test method. Also, a simple and risk-free test was possible compared to the conventional test method for high pressure hydrogen tanks.

A Characteristic Analysis of High Pressure and High Temperature 3-way Ball Valve (고온.고압용 3-way 볼밸브의 특성해석)

  • Lee, Joon-Ho
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.11 no.4
    • /
    • pp.180-184
    • /
    • 2012
  • 3-way ball valves have been mostly used for high temperature/high pressure valves using in petrochemical carriers and oil tankers, which requires high quality products with confidentiality and durability. As a larger disaster may be generated by leakage of oil or gas from valves, thus the present research applied a numerical analysis method with thermal-structural coupled field analysis and the performance test. The Max stress by parts was confirmed through thermal-structural coupled field analysis and develop the 3-way ball valve design, which is safe on operating condition. And its performance was verified by carrying out pressure test, leakage test and durability test for the manufactured 3-way ball valves with satisfying it's regulations.

A study on the Pressure Test of the Glass Window for High Speed Train (고속철도차량용 창문유리의 압력시험에 관한 연구)

  • Chang, Dae-Sung;Yi, Won
    • Journal of the Korean Society for Railway
    • /
    • v.14 no.5
    • /
    • pp.391-397
    • /
    • 2011
  • In this paper, the pressure endurance test of passenger train's glass window which was developed for next high speed train was studied. At first, pressure test equipment which will be able to generate the maximum pressure same as crossing case between two trainsets in the tunnel was developed. Afterwards the pressure test and evaluation that are based on NFF31-314 were carried out and studied.

Accelerated Life Test Model for Life Prediction of Piston Assemblies in Hydraulic Pump and Motor (유압펌프 및 모터 피스톤 조립체의 수명예측을 위한 가속실험 모델)

  • Lee Y.B.;Kim H.E.;Yoo Y.C.;Park J.H.
    • Transactions of The Korea Fluid Power Systems Society
    • /
    • v.2 no.4
    • /
    • pp.14-22
    • /
    • 2005
  • The safety factor of hydraulic piston pumps & motors due to high pressurization, high speedization and low weight/volume realization to enhance the output density shows a tendency to decrease. Therefore more effective test methods are necessary to predict the exact life. The failure of hydraulic pumps & motors operating in high pressure and high speed mainly occurs in piston-shoe assemblies, and the major failure mode is wearout of the shoe surface. The sensitive parameters in the endurance life test are speed, pressure and temperature, and the failure production increases in proportion to the operating time. In this research, the authors propose the combined accelerated life test model using the analysis method of the combined accelerated life test results of piston-shoe assemblies by applying simultaneously high speed, high pressure and high temperature in accordance with variation of speed, pressure and temperature to reduce the life test time.

  • PDF