• Title/Summary/Keyword: High-Power Amplifier

Search Result 909, Processing Time 0.039 seconds

Design of a Highly Integrated Palette-type High Power Amplifier Module Using GaN Devices for DPD Application (질화갈륨 소자를 이용한 DPD용 고집적 팔렛트형 고출력증폭기 모듈 설계)

  • Oh, Seong-Min;Lim, Jong-Sik
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.5
    • /
    • pp.2241-2248
    • /
    • 2011
  • This paper describes the design of a palette-type 60watt high power amplifier module using gallium nitride(GaN) devices with high power and efficiency performances for WiMAX and LTE systems. The line-up for the high gain amplifier module consists of the pre-amplifier stage with low power and high gain, 8watt GaN driving amplifier stage, and 60watt GaN high power amplifier stage of Doherty structure with two 30watt GaN devices. The obtained gain is 61.4dB with an excellent gain flatness of ${\pm}$0.075dB over 2.5~2.68GHz. GaN devices and the Doherty structure are adopted for the improvement of high efficiency and output power. The measurement for the fabricated high power amplifier module of palette type is performed using the widely known WiMAX signal all over the world. In the example of RRH(remote radio head) application of the fabricated amplifier module, the measured efficiency is 37~38% with the 10watts of modulated output power. It is shown that when the fabricated amplifier module is activated with a digital predistorter(DPD), the measured ACLR is better than 46dBc under the 10watts of modulated output power.

High Power Amplifier using Radial Power Combiner (레디알 전력 결합기를 이용한 고출력 증폭기)

  • Choi, Jong-Un;Yoon, Young-Chul;Kim, Young
    • Journal of Advanced Navigation Technology
    • /
    • v.21 no.6
    • /
    • pp.626-632
    • /
    • 2017
  • This paper describes a high power amplifier combining eight low power amplifiers using a radial power combiner with low insertion loss. The radial power combiner is a non-resonant type combiner with 8 input ports and is implemented by microstrip transmission line. The combiner characteristics designed at operating frequency of 1.045 GHz have an insertion loss of 0.7 dB and a return loss of more than 12 dB. Also, the low power amplifier used was designed with AFT27S010NT1 transistor and designed to satisfy the same gain, phase and constant output characteristic at operating frequency. The high power amplifier, which combiners the radial power combiner and the drive amplifier of 8 W output by driving low power amplifiers obtained the output characteristic of 33 W at operating frequency of 1.045 GHz. Also, the change of the output characteristic of the amplifier using the radial combiner was graceful degradation when the low power amplifier failed one by one.

Implementation of An Water-Cooled High Power Amplifier for Particle Accelerator (입자 가속기용 수냉식 고전력 증폭기 구현)

  • Yoon, Young-Chul;Kim, Young
    • Journal of Advanced Navigation Technology
    • /
    • v.21 no.1
    • /
    • pp.66-71
    • /
    • 2017
  • This paper describes implementation of a 165 MHz, 5 kW RF high power amplifier (HPA) for particle accelerator applications. The HPA consists of a drive amplifier for main amplifiers driving, sixteen 600 W class-AB push-pull power amplifier pallets and Wilkinson power divider/combiner using lumped LC components, which are divided/combined power amplifier pallet outputs. To detected the amplifier circuit of normal and reflected output power conditions, we used a bidirectional coupler. To radiate heat of main power amplifier, we were used an water-cooled copper plates to go through a water for radiation of heat. The HPA of center frequency 165 MHz has archived an efficiency of 62.5 % at 5 kW of power level experimentally.

A Design of Predistorter for Independently Controllable AM/AM and AM/PM of High Power Amplifier for the Communication Systems (통신용 대전력증폭기의 AM/AM과 AM/PM을 독립적으로 제어하는 전치왜곡보상기 설계)

  • 원용규;정찬수
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.53 no.3
    • /
    • pp.188-196
    • /
    • 2004
  • Amplifier linearity plays a major role in the quality of mordern communication systems. The Power amplifier should be operated near saturation region to achieve high efficiency But at this region amplitude and phase distortions of the amplifier remarkably increase with the input power increase and cause a significant adjacent channel interference. In this paper, an independently controllable AM/AM and AM/PM predistortion linearizers consisted of two bias feed resistance linearizers is proposed. This linearizer allows independent adjustment of the AM/AM and AM/PM curves by using two adjustable voltages to compensate tile power amplifier non-linearities. The predistortion linearizer can improve the ACPR by 5.3dB with cdma2000 multi carrier signals. And by applying this linearizer to two-tone(880MHz) power amplifier, third order IMD products are improved up to 8(dB).

Very High Linearity of High Power Amplifier by Reduction of $2^{nd}$, $3^{rd}$ Harmonics and Predistortion of $3^{rd}$ IMD (3차 혼변조 신호의 전치왜곡과 2, 3차 고조파 억제를 통한 고선형성 고출력 전력 증폭기에 관한 연구)

  • Lee, Chong-Min;Seo, Chul-Hun
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.48 no.1
    • /
    • pp.50-54
    • /
    • 2011
  • In this article, the linearity of single power amplifier is improved by suppress $2^{nd}$ and $3^{rd}$ harmonics at output port of high power amplifier and by cancelling of $3^{rd}$ IMD. The matching network in order to suppress harmonics consists of metamaterial like the CRLH. The $2^{nd}$ and $3^{rd}$ harmonics are suppressed over 27 dBc, respectively. A phase of generated $3^{rd}$ IMD at output of DPA (drive power amplifier) has changed in order to offset the $3^{rd}$ IMD of HPA (high power amplifier). The harmonics of the proposed PAM suppress over 6 dB than single HPA. The PAM has a 36.98 dBm of the output power, 21.6 dB of the power gain and 29.4 % of the PAE. The harmonics is a -53 dBc about PAM. This result indicate that a harmonic level is lower 20 dB than reference power amplifier.

Design and Fabrication of S-band Ultra High Power Transistorized Amplifier (마이크로파대 고출력 트란지스터 증폭기의 설계와 시작)

  • 심재철;김종련
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.14 no.5
    • /
    • pp.7-14
    • /
    • 1977
  • Conventionally, a TIVT has been used for high power amplification in the microwave frequency range. However, an ultra-high-power amplifier in the 2GHz range has successfully been designed and fabricated employing high power transistors developed recently and available commercially. In the design of the amplifier, a balanced-pair configuration is adopted in order to obtain very high microwave power, and a good impedance matching is achieved by making use of microstripline techniques. For the RF power divider as well as combiner, an approach of stripline directional coupler isadopted because of its easiness in fabrication. The coupler so designed and fabricated indicates a satisfactory performance as a quadrature hybrie coupler. Measurements on the amplifier developed for an immediate commercial application also exhibit excellent overall performance characteristics RF power output, 14 watts, gain 14dB, frequency bandwidth, 160MHz, effciency 40%.

  • PDF

A Compact C-Band 50 W AlGaN/GaN High-Power MMIC Amplifier for Radar Applications

  • Jeong, Jin-Cheol;Jang, Dong-Pil;Han, Byoung-Gon;Yom, In-Bok
    • ETRI Journal
    • /
    • v.36 no.3
    • /
    • pp.498-501
    • /
    • 2014
  • A C-band 50 W high-power microwave monolithic integrated circuit amplifier for use in a phased-array radar system was designed and fabricated using commercial $0.25{\mu}m$ AlGaN/GaN technology. This two-stage amplifier can achieve a saturated output power of 50 W with higher than 35% power-added efficiency and 22 dB small-signal gain over a frequency range of 5.5 GHz to 6.2 GHz. With a compact $14.82mm^2$ chip area, an output power density of $3.2W/mm^2$ is demonstrated.

Design of High Gain Low Noise Amplifier (2.4GHz 고이득 저잡음 증폭기 설계)

  • 손주호;최석우;윤창훈;김동용
    • Proceedings of the IEEK Conference
    • /
    • 2002.06b
    • /
    • pp.309-312
    • /
    • 2002
  • In this paper, we discuss the design of high gain low noise amplifier by using the 0.2sum CMOS technology. A cascode inverter is adopted to implement the low noise amplifier. The proposed cascode inverter LNA is one stage amplifier with a voltage reference and without choke inductors. The designed 2.4GHz LNA achieves a power gain of 25dB, a noise figure of 2.2dB, and power consumption of 255㎽ at 2.5V power supply.

  • PDF

Design and Fabrication of C-Band GaN Based on Solid State High Power Amplifier Unit for a Radar System (레이다용 C-대역 GaN 기반 고출력전력증폭장치 설계 및 제작)

  • Jung, Hyoung Jin;Park, Ji Woong;Jin, Hyoung Seok;Lim, Jae Hwan;Park, Se Jun;Kang, Min Woo;Kang, Hyun Chul
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.28 no.9
    • /
    • pp.685-697
    • /
    • 2017
  • In this paper, it is presented the result of design and fabrication for C-band solid state high power amplifier unit and components using in search radar. The solid state power amplifier(SSPA) assembly was fabricated using GaN(Gallium Nitride), which is semiconductor device, and the transmit signal output power of the solid state high power amplifier unit is generated by combining the transmit signal power of the solid state power amplifier configured in parallel through a design and fabricated waveguide type transmit signal combine assembler. Designed solid state high power amplifier unit demonstrated C-band 500 MHz bandwidth, maximum 10.5% duty cycle, transmit pulse width from $0.0{\mu}s{\sim}000{\mu}s$, and transmit signal power is 44.98 kW(76.53 dBm).

A Study on the Power Amplifier with High Efficiency for IMT-2000 (고효율 특성을 갖는 IMT-2000용 전력 증폭기 설계에 관한 연구)

  • 조병근;이상원;홍신남
    • Proceedings of the IEEK Conference
    • /
    • 2000.11a
    • /
    • pp.325-328
    • /
    • 2000
  • This paper has been studied a rower amplifier for IMT-2000 handset. Circuit design is performed and optimized by using HP ADS RF software. Designed amplifier consist of 2 stage, has 25㏈ gain, over 27㏈m output power and about 40% power efficiency. Power amplifier operation frequency range is 1955${\pm}$70MHz. Mask layout of the designed Amplifier consisting of 4 mask. The measured results of these values are satisfying the specification of IMT-2000 handset.

  • PDF