• 제목/요약/키워드: High-Oxygen Concentration

Search Result 946, Processing Time 0.03 seconds

Nitrogen Removal from ADEPT Effluent of Piggery Wastewater using Nitritation/Denitiritation System (ADEPT공정을 거친 돈사폐수의 아질산화-아탈질 공정을 이용한 질소제거)

  • Lee, Hwa-Sun;Min, Kyung-Sok
    • Journal of Korean Society on Water Environment
    • /
    • v.22 no.1
    • /
    • pp.134-139
    • /
    • 2006
  • Partial nitirification and denitrification process has been reported to be technically feasible and economically favorable, especially for wastewater treatment with high ammonium concentration or low Carbon/Nitrogen ratio. This research was performed to survey nitrite accumulation by nitritation in treating ADEPT effluent of piggery wastewater, which contains highly concentrated ammonia. To estimate the possibility of nitrite accumulation, DO concentration and SRT were investigated as key operational parameters. This result proved that nitritation to nitrite was steadily obtained under short sludge retention time. Oxygen limitation was proved to be just a subsidiary parameter. Energy efficiency of nitritation-denitritation process was higher than complete nitrification-denitrification because external carbon requirement for denitritation could be saved. Though the influent contained significant nonbiodegradable organic substrate, total nitrogen removal efficiency was more than 51% in nitritation-denitritation system.

Extinguishment of n-heptane Pool Fire by Water Mist Containing Alkali Metal Agent (알칼리 금속염을 함유한 미분무수의 헵탄 Pool Fire 소화)

  • Park, Jae-Man;Shin, Chang-Sub
    • Journal of the Korean Society of Safety
    • /
    • v.20 no.3 s.71
    • /
    • pp.105-111
    • /
    • 2005
  • An experimental study is performed for extinguishing of n-heptane pool fire by water mist containing potassium acetate as a fire suppression additive. Water mist was generated by a single pressure nozzle in a small-scale chamber. The drop size distribution of water mist was measured using laser diffraction(Malvern particle sizer). The flame temperature, oxygen concentration and carbon monoxide concentration were measured. In case of using additives, the fire extinguishing time was shorter than that of pure water at a given discharge pressure and it was because the momentum of a water droplet containing additives was increased. And also dissociated metal atoms, potassium, were reacted as a scavenger of the major radical species OH, H which were generated for combustion process. Moreover, at a high pressure of 4MPa, the fire was extinguished through blowing effect as well as primary extinguishing mechanisms.

Influence of Ammonia and Dissolved Oxygen Concentrations on Nitrite Accumulation in a MBR (MBR 반응조에서 아질산염 축적에 미치는 암모니아와 용존산소 농도의 영향 연구)

  • Choi, In-Su;Wiesmann, Udo
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.29 no.8
    • /
    • pp.922-929
    • /
    • 2007
  • The complete oxidation of ammonia to nitrate is a distinctive two-step process divided into the oxidation of ammonia to nitrite(nitritation) by Nitrosomonas and the oxidation of nitrite to nitrate(nitratation) by Nitrobacter. The nitrogen removal via nitrite accumulation offers several advantages such as saving costs for aeration, saving carbon source and finally reduction of sludge discharge. In this work a suspended bioreactor coupled with membrane filtration(MBR) was used to find the process conditions of nitrite build-up. The MBR enables to reach sufficient nitrifying bacteria in the bioreactor, although the autotrophic bacteria can be easily washed out due to their lower growth rate. The dissolved oxygen concentration $c'_{O2}$ and ammonia concentration $c_{NH3}$ in the reactor were varied and investigated as parameters for nitrite accumulation. As a result the higher ammonia concentration in the reactor is very effective for starting nitrite build-up and the effect was strengthened in combination with lower dissolved oxygen concentration. With lower $c'_{O2}<0.3$ $mgL^{-1}$ $O_2$ and high $c_{NH3}=6.3\sim14.9$ $mgL^{-1}$ $NH_3N$ the 74% of the nitrite accumulation was achieved. Specially, it was found that the nitrite accumulation could occur not only in biofilm reactor as many references showed but also in the membrane bioreactor carried out in this study.

Numerical simulation of gasification of coal-water slurry for production of synthesis gas in a two stage entrained gasifier (2단 분류층 가스화기에서 합성가스 생성을 위한 석탄 슬러리 가스화에 대한 수치 해석적 연구)

  • Seo, Dong-Kyun;Lee, Sun-Ki;Song, Soon-Ho;Hwang, Jung-Ho
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2007.11a
    • /
    • pp.417-423
    • /
    • 2007
  • Oxy-gasification or oxygen-blown gasification, enables a clean and efficient use of coal and opens a promising way to CO2 capture. The coal gasification process of a slurry feed type, entrained-flow coal gasifier was numerically predicted in this paper. The purposes of this study are to develop an evaluation technique for design and performance optimization of coal gasifiers using a numerical simulation technique, and to confirm the validity of the model. By dividing the complicated coal gasification process into several simplified stages such as slurry evaporation, coal devolatilization, mixture fraction model and two-phase reactions coupled with turbulent flow and two-phase heat transfer, a comprehensive numerical model was constructed to simulate the coal gasification process. The influence of turbulence on the gas properties was taken into account by the PDF (Probability Density Function) model. A numerical simulation with the coal gasification model is performed on the Conoco-Philips type gasifier for IGCC plant. Gas temperature distribution and product gas composition are also presented. Numerical computations were performed to assess the effect of variation in oxygen to coal ratio and steam to coal ratio on reactive flow field. The concentration of major products, CO and H2 were calculated with varying oxygen to coal ratio (0.2-1.5) and steam to coal ratio(0.3-0.7). To verify the validity of predictions, predicted values of CO and H2 concentrations at the exit of the gasifier were compared with previous work of the same geometry and operating points. Predictions showed that the CO and H2 concentration increased gradually to its maximum value with increasing oxygen-coal and hydrogen-coal ratio and decreased. When the oxygen-coal ratio was between 0.8 and 1.2, and the steam-coal ratio was between 0.4 and 0.5, high values of CO and H2 were obtained. This study also deals with the comparison of CFD (Computational Flow Dynamics) and STATNJAN results which consider the objective gasifier as chemical equilibrium to know the effect of flow on objective gasifier compared to equilibrium. This study makes objective gasifier divided into a few ranges to study the evolution of the gasification locally. By this method, we can find that there are characteristics in the each scope divided.

  • PDF

Electrical Properties for Enhanced Band Offset and Tunneling with a-SiOx:H/a-si Structure (a-SiOx:H/c-Si 구조를 통한 향상된 밴드 오프셋과 터널링에 대한 전기적 특성 고찰)

  • Kim, Hongrae;Pham, Duy phong;Oh, Donghyun;Park, Somin;Rabelo, Matheus;Kim, Youngkuk;Yi, Junsin
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.34 no.4
    • /
    • pp.251-255
    • /
    • 2021
  • a-Si is commonly considered as a primary candidate for the formation of passivation layer in heterojunction (HIT) solar cells. However, there are some problems when using this material such as significant losses due to recombination and parasitic absorption. To reduce these problems, a wide bandgap material is needed. A wide bandgap has a positive influence on effective transmittance, reduction of the parasitic absorption, and prevention of unnecessary epitaxial growth. In this paper, the adoption of a-SiOx:H as the intrinsic layer was discussed. To increase lifetime and conductivity, oxygen concentration control is crucial because it is correlated with the thickness, bonding defect, interface density (Dit), and band offset. A thick oxygen-rich layer causes the lifetime and the implied open-circuit voltage to drop. Furthermore the thicker the layer gets, the more free hydrogen atoms are etched in thin films, which worsens the passivation quality and the efficiency of solar cells. Previous studies revealed that the lifetime and the implied voltage decreased when the a-SiOx thickness went beyond around 9 nm. In addition to this, oxygen acted as a defect in the intrinsic layer. The Dit increased up to an oxygen rate on the order of 8%. Beyond 8%, the Dit was constant. By controlling the oxygen concentration properly and achieving a thin layer, high-efficiency HIT solar cells can be fabricated.

The Characteristics of the Complex Discharge Type Ozonizer using Applied Voltage of a Inverse-Polarity and a Screw Type Electrode (역극성 전압인가와 나사형 전극을 이용한 복합방전형 오존발생기의 특성)

  • Song, Hyun-Jig
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.25 no.9
    • /
    • pp.80-85
    • /
    • 2011
  • In this paper, complex discharge type ozonizer with a screw type electrode has been designed and manufactured for environmental improvement using low power and high efficency ozoniazer. The complex discharge type ozonizer is equipped with three electrodes{central electrode(CE), internal electrode(IE) and external electrode(EE)}. Ozone of the complex discharge type ozonizer is generated by superposition of silent discharge and surface discharge in discharge space as a screw type CE and IE are respectively applied to AC high voltage of inverse-polarity has $180[^{\circ}]$ phase difference, EE is common electrode. In this time, when oxygen has been used as supplied gas, the maximum values of ozone concentration, ozone generation and ozone yield were obtained as 8,334[ppm], 3,249[mg/h] and 65.3[g/kwh].

High Density Cell Culture of Mucor sp. KCTC 8405P for Production of ${\gamma}-Linolenic$ Acid in Fed-Batch Culture

  • Park, Jong-Hyun;Shin, Hyun-Kyung
    • Journal of Microbiology and Biotechnology
    • /
    • v.1 no.2
    • /
    • pp.126-129
    • /
    • 1991
  • In order to produce ${\gamma}-linolenic$ acid by Mucor sp. KCTC 8405P. the fungus was cultivated in fed-batch culture with two phases. i.e., growth in yeast-like form and induction to hyphal growth by pH shift of the culture medium during cultivation. The synchronous growth of the fungus into the appropriate sizes was important for the high density cell culture of this dimorphic fungus. Dissolved oxygen concentration in the medium did not affect degree of unsaturation of fatty acids and ${\gamma}-linolenic$ acid content. Under the culture conditions applied in this experiment. the fungus was found to produce 100 g/l dry mycelia containing 40% of the lipids, where ${\gamma}-linolenic$ acid comprised about 9% of the total extractable fatty acids.

  • PDF

Lubricating Performance of Polyalkylene Glycol and Polyolester Base Oils analyzed from the Model of Interaction between Environmentally adapted Polar base oils and Additive (TCP) (환경친화적인 극성기유와 첨가제(TCP)의 상호작용모델로부터 해석된 Polyalkylene glycol 및 Polyolester Base Oil의 윤활작용)

  • ;Masabumi Masuko
    • Tribology and Lubricants
    • /
    • v.17 no.2
    • /
    • pp.146-152
    • /
    • 2001
  • Environmentally adapted synthetic base oils of polyalkylene glycols (PAGs) and polyol esters (POEs) show a high polarity because of their functional groups containing oxygen atom. The lubricating performance of these polar base oils was investigated by using a four-ball tribometer under boundary lubrication condition. Four polyalkylene glycols and five polyol ester base oils were used as sample base oils of high polarity. A mineral oil (MO) and alkylnaphthalene (AN) were used as low polarity base oils. Tricrecylphosphate (TCP) was added to all the base oils, in the range of 10 mmol/L-2000 mmol/L, as an antiwear additive. All the TCP-for-mutated base oils showed optimum concentration characteristics for minimizing wear. The order of optimum concentration of all the base oils was in a good accordance with the order of relative stability of TCP in base oils. The interaction model on solvation between additive and different polar base oils can expect the stability order of TCP. Thus, the model on solvation can explain well the order of optimum concentration of all the base oils, by using the effect of polarity (dielectric constant, $\varepsilon$) and molecular size (molecular weight, MW) of them on stability of TCP in polar base oils. Finally, a good correlation of the optimum concentration for all the base oils was obtained when it was arranged as a function of C∝(M $W_{Base Oil}$/M $W_{TCP}$)$^{-2}$.71/.($\varepsilon$$_{Base Oil}$)$^{3.38}$ by these two parameters.s..

An Experimental Study on the NH3-SCR of NOx over a Vanadium-based Catlayst (바나듐 계열 촉매를 통한 NOx의 NH3-SCR에 관한 실험적 연구)

  • Jeong, Hee-Chan;Sim, Sung-Min;Kim, Young-Deuk;Jeong, Soo-Jin;Kim, Woo-Seung
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.20 no.1
    • /
    • pp.20-27
    • /
    • 2012
  • The $NH_3$-SCR characteristics of $NO_X$ over a V-based catalyst are experimentally examined over a wide range of operating conditions, i.e., $170-590^{\circ}C$ and $30,000-50,000h^{-1}$, with a simulated diesel exhaust containing $NH_3$, NO, $NO_2$, $O_2$, $H_2O$, and $N_2$. The influences of the space velocity and oxygen concentration on the standard-SCR reaction are analyzed, and it is shown that the low space velocity and high oxygen concentration promote the SCR activity by ammonia. The best $deNO_X$ efficiency is obtained with a $NO_2/NO_X$ ratio of 0.5 because of an enhanced chemical activity induced by the fast-SCR reaction, while at the $NO_2/NO_X$ ratios above 0.5 the $deNO_x$ activity decreases due to the slow-SCR reaction. The oxidation of ammonia begins to take place at about $300^{\circ}C$ and the reaction products, such as $N_2$, NO, $NO_2$, $N_2O$, and $H_2O$, are produced by the undesirable oxidation reactions of ammonia, particularly at high temperatures above $450^{\circ}C$. Also, $NO_2$ decomposes to NO and $O_2$ at temperatures above $240^{\circ}C$. Therefore, $NO_2$ decomposition and ammonia oxidation reactions deteriorate significantly the SCR catalytic activity at high temperatures.

A Study of Ozone Generation Characteristic using Ceramic Catalyst Tube of Ti-Si-Al (Ti-Si-Al형 세라믹 촉매 방전관의 오존 발생 특성 연구)

  • 조국희;김영배;이동훈
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.16 no.6
    • /
    • pp.130-136
    • /
    • 2002
  • A novel ozonizer has been developed using a high frequency surface discharge and a high purity Ti-Si-Al ceramic catalyst as its dielectric component. A cylindrical thin compound ceramic catalyst in reactor is adhered to inside of the film-like outside electrode. And, when experiment condition are oxygen gas temperature of 20 [$^{\circ}C$], inner reactor pressure of 1.6 atm 600[Hz] and flow late of 2[l/min]. the ozonizer can easily produce ozone concentration(50~60[g/㎥]for oxygen) and power efficiency(180[g/kWh]for oxygen) without using a special enrichment means. At 2[l/min], 20[$^{\circ}C$], 1.6[atm], 600[Hz]and 40[W], the result of simulation to gas temperature of reactor using general code Phoenics, the maximum temperature of reactor was 132[$^{\circ}C$]in reactor. Ant the result electric field simulation of Ti-Si-Al type reactor using general code Flux 2D, maximum electric field was 0.131E.08[V/m].