• Title/Summary/Keyword: High-Frequency Induction Heating

Search Result 244, Processing Time 0.028 seconds

Fluid Heating System using High-Frequency Inverter Based on Electromagnetic Indirect Induction Heating

  • Kim Yong-Ju;Shin Dae Cheul;Kim Kee Hwan;Uchihori Y.;Kawamura Y.
    • Proceedings of the KIPE Conference
    • /
    • 2001.10a
    • /
    • pp.69-74
    • /
    • 2001
  • In this Paper are described the indirect induction heated boiler and induction heated hot air producer using the voltage-fed series resonant high-frequency inverter which can operate in the frequency range from 20kHz to 50kHz. A specially designed induction heater, which is composed of laminated stainless assembly with many tiny holes and interconnected spot welding points between stainless plates, is inserted into the ceramic type vessel with external working coil. This working coil is connected to the inverter and turbulence fluid through this induction heater to moving fluid generates in the vessel. The operating performances of this unique appliance in next generation and its effectiveness are evaluated and discussed from a practical point of view.

  • PDF

A Study on the Induction Heating for Aluminum Sheet Using High-Frequency Resonant Inverter) (고주파 공진형 인버터를 이용한 알루미늄 박판가열에 관한 연구)

  • Shin, Dae-Chul;Kim, Sung-Ho
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.18 no.3
    • /
    • pp.90-94
    • /
    • 2004
  • In this treatise, The "Induction-Heating" and "The Skin Effect" which resulted from the High-Frequency using the High-Frequency Resonant Inverter are showed by this paper. It would research into "The Electro-magnetic Induction" and "The skin Effect" with an aluminum which is the typical paramagenetic metal. Ultimately, it was focused on the possibility of the heating for an aluminum sheet and draw up its practical use-plan.

A Study on the Frequency Control on the Induction Heating System Using Two Step Resonant Inverter (공진형 인버터를 이용한 2단 유도가열 시스템의 주파수제어에 관한 연구)

  • Yoo, Jae-Hoon;Shin, Dae-Cheul
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.22 no.1
    • /
    • pp.95-103
    • /
    • 2008
  • Proposed induction-heated system is innovative system which applied special high-frequency power circuit technique for thermal converse technique and IH(Induction-Heating) magnetic induction heating generated from induction-heated metallic package that is for distillation unit. In this occurs not burning, so that the working environment can be improved. This electromagnetic induction heating technique is used high frequency inverter. By using high frequency inverter high frequency alternative current (HFAC) in the range of [kHz] can be made with conventional alternative current. In this contribution IGBT module is used for high frequency inverter. In this paper are discussed action analysis and characteristics analysis of 1.5[kW]-Class half-bridge resonant inverter system and resonant metallic package. In addition, by using this system, how two step heating superheated steam generator is developed and application of system are also discussed.

Characteristics of Mechanical Properties and Micro Structure according to High-Frequency Induction Heating Conditions in Roll Forming Process of a Sill Side Part (실사이드 부품의 롤포밍공정에서 고주파유도가열 부가조건에 따른 기계적 특성 및 미세조직 평가)

  • Kim, Kun-Young;Choy, Lee-Jon;Shin, Hyun-Il;Cho, Jun-Haeng;Lee, Chang-Hoon;Kang, Myung Chang
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.16 no.6
    • /
    • pp.87-94
    • /
    • 2017
  • Hot stamping processes are possible for tensile strength 1.4 GPa but the strength reduction is appeared from the cooling performance unbalance. And the strength of roll forming process is below than that of hot stamping process owing to using the steel which is lower strength of boron steel. In this study, We provide roll forming process asssisted high-frequency induction heating to solve the problem of conventional one. The experiments were carried out at under various sill side part conditions: high-frequency induction heating conditions of 15, 18, 21, 24, 27 and 30 kW. The high-frequency induction heating temperature was checked with Infrared camera and the sill side parts of mechanical properties and microstructure were measured. The heating temperature of high frequency induction was measured to max $850^{\circ}C$ under the coil power of 30 kW. The tensile strength was 1.5 GPa and hardness was 490 Hv. The martensite structure was discovered under coil power of 30 kW. The weight of steel material sill side having thickness 1.5 mm and the boron steel sill side having thickness 1.2 mm were compared to weight effect. The boron steel sill side reduced 11.5% compared to steel. Consequently, manufacturing process of 1.5 giga-grade's sill side part was successfully realized by the roll forming assisted high-frequency induction heating methods.

A Study on Rapid Mold Heating System using High-Frequency Induction Heating (고주파 유도가열을 사용한 급속 금형가열에 관한 연구)

  • Jeong, Hui-Tack;Yun, Jae-Ho;Park, Keun;Kwon, Oh-Kyung
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.31 no.5
    • /
    • pp.594-600
    • /
    • 2007
  • Rapid mold heating has been recent issue to enable the injection molding of thin-walled parts or micro/nano structures. Induction heating is an efficient way to heat a conductive workpiece by means of high-frequency electric current caused by electromagnetic induction. Because the induction heating is a convenient and efficient way of indirect heating, it has various applications such as heat treatment, brazing, welding, melting, and mold heating. The present study covers an experimental investigation on the rapid heating using the induction heating and rapid cooling using a vortex tube in order to eliminate an excessive cycle time increase. Experiments are performed in the case of a steel cup mold core with various heating and cooling conditions. Temperature is measured during heating and cooling time, from which appropriate mold heating and cooling conditions can be obtained.

Numerical analysis of induction heating for the application of line heating (선상 가열을 위한 고주파 유도 가열의 수치 해석)

  • Jung-Gyu Kang;Jang-Hyun Lee;Jong-Gye Shin
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.37 no.3
    • /
    • pp.110-121
    • /
    • 2000
  • Gas heating, high frequency induction heating and laser heating can be used as the heat-source of line heating. Most of shipyards have been using the gas heating method for line heating. It is difficult to control the residual deformation of gas heating. High frequency induction heating is more feasible for the automation of line heating rather than the gas heating method since it is easy to control the magnitude of heat input. In this study, a numerical model of high frequency induction heating process is proposed for the application of the line heating. The simulation process of the induction heating is composed of the electromagnetic analysis, the heat transfer analysis, and the thermal deformation analysis.

  • PDF

A study on the prediction of the angular distortion in line heating with high frequency induction heating (고주파 유도가열을 이용한 선상가열 시 각 변형 예측에 관한 연구)

  • Park, Dong-Hwan;Jin, Hyung-Kook;Park, Soung-Sig;Shin, Sang-Beom
    • Journal of Welding and Joining
    • /
    • v.33 no.1
    • /
    • pp.80-86
    • /
    • 2015
  • The purpose of this study is to establish the predictive method of the angular distortion caused by the line heating process with high frequency induction heating. In order to do it, the heat input model for the high frequency induction heating system was established through comparing the temperature evaluation results obtained by both FEA and experiment. The critical heating conditions to prevent the degradation of the work piece with various thicknesses were identified by FEA and microstructure test results. Under the critical heating conditions, the extensive line heating tests were performed. According to the test results, it was found that the angular distortion behavior of the heated plates could be defined as the function of heat intensity and the rigidity of heated plate. In addition, it was clarified that the angular distortion strongly depended on the size of test specimen such as the length and the width of the heated plate. Based on these results, the predictive equation for the angular distortion was established with the function of heat intensity, bending rigidity and size of heated plate.

The High-frequency Induction-heating application for 2700kW power (2700kW급 고주파 유도 가열 장치의 시작)

  • 이영호;김용환;이광수;이현우
    • Proceedings of the KIPE Conference
    • /
    • 1998.07a
    • /
    • pp.171-174
    • /
    • 1998
  • The development of the high-frequency induction-heating for 2700kW power range intend to make localization at forging and rolling mill part by technical innovation. And, the development makes to increase our's competitive power at technique, quality and cost. This paper describes the heart of high-frequency induction-heating technique, switching technique, a few problem in common using as an unsatisfied technique, load adjustment technique, system control, diagnostic system, and auto-interface etc.

  • PDF

The Study on High-Frequency Switching Drive Method Using IGBT For Non-Magnetic Induction Heating System (비자성 유도가영시스템을 위한 IGBT를 이용한 고속스위칭 구동에 관한 연구)

  • 김정태;권경안;정윤철;박병욱
    • Proceedings of the KIPE Conference
    • /
    • 1998.07a
    • /
    • pp.24-26
    • /
    • 1998
  • A new high frequency switching drive method using IGBT is proposed for non-magnetic induction heating system. Using this method, the switching and conduction losses of the switching devices can be reduced. In addition, since IGBT cosl is lower than MOS-FET one, the system cosl can be remarkably pared down. The prototype induction heating system with 1.2㎾ power consumption is builted and tested to verify the operation of the proposed high frequency switching drive method.

  • PDF