• 제목/요약/키워드: High-Efficiency Motors

검색결과 274건 처리시간 0.035초

BLDC 전동기와 공기포일베어링을 이용한 고효율 터보블로워 (High-Efficiency TurboBlowers using High-Speed BLDC Motors and Foil Air Bearings)

  • 오종식;이헌석
    • 유체기계공업학회:학술대회논문집
    • /
    • 유체기계공업학회 2003년도 유체기계 연구개발 발표회 논문집
    • /
    • pp.309-314
    • /
    • 2003
  • High-efficiency turboblowers in the next generation have been successfully developed and commercialized first in the world, using the high-speed BLDC motors and the foil air bearings. About 20-35% savings in electricity consumption in the field are found in comparison with the conventional roots rotary blowers and the integral gear-driven turboblowers. Current TB75 and TB150 products are replacing the existing blowers in the worldwide market.

  • PDF

회전자 위치정보 센서를 이용한 Switched Reluctance Motor (SRM)의 구동 및 제어 시스템 Modeling (Modeling of Switched Reluctance Motor (SRM) Drive and Control System using Rotor Position Information Sensor)

  • 정성인
    • 한국인터넷방송통신학회논문지
    • /
    • 제21권3호
    • /
    • pp.137-142
    • /
    • 2021
  • 최근에는 회전자에 희토류 영구자석을 삽입하여 높은 효율과 출력밀도를 얻을 수 있는 매입형 영구자석 (IPM: Interior Permanent Magnet) 전동기 또는 표면부착형 영구자석 (SPM : Surface Permanent Magnet) 전동기처럼 영구자석이 사용된 전동기의 연구가 활발히 이루어지고 있다. 영구자석을 사용하기 때문에 릴럭턴스 전동기나 유도전동기와 비교해 효율이 높고 출력밀도가 높은 장점이 있으나 회전자에 영구자석을 삽입함으로써 고속운전 및 영구자석의 감자로 인한 신뢰성 감소, 희토류 금속의 원가 상승 등이 문제시되고 있다. 본 논문에서는 희토류 영구자석 전동기를 대체할 수 있는 미래기술 개발과, 희토류 저감형 전동기와 탈 희토류 전동기의 기술 선점을 요구하는 시대적 이슈(Issue)에 맞춰 영구자석이 필요 없는 스위치드 릴럭턴스 전동기 (Switched Reluvtance Motor, SRM)를 구동시키기 위한 구동 제어에 연구하고자 한다. PSIM 시뮬레이션 프로그램에서 제공하는 3상 SRM library를 이용하여 회전자 위치 정보 센서를 이용한 SRM의 구동 및 제어 시스템 모델링 (Modeling)을 연구하고자 한다.

High Efficiency Drive Technique for Synchronous Reluctance Motors Using a Neural Network

  • Urasaki Naomitsu;Senjyu Tomonobu
    • Journal of Power Electronics
    • /
    • 제6권4호
    • /
    • pp.340-346
    • /
    • 2006
  • A high efficiency drive technique for synchronous reluctance motors (SynRM) using a neural network (NN) is presented in this paper. High efficiency drive condition depends on the mathematical model of SynRM. A NN is employed as an adaptive model of SynRM. The proposed high efficiency drive technique does not require an accurate mathematical model of SynRM. Moreover, the proposed method shows robustness against machine parameter variations because the training algorithm of the NN is executed on-line. The usefulness of the proposed method is confirmed through experimentation.

INVERTER를 응용한 MOTOR 냉각 제어시스템의 전력절감에 관한 연구 (A Study on Energy Saving of the Motor Cooling System with an Inverter)

  • 김기홍;정지훈;권봉환
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2004년도 학술대회 논문집 정보 및 제어부문
    • /
    • pp.611-613
    • /
    • 2004
  • This paper is concerned with the simulation and determination of the input voltage and frequency for the optimal efficiency operation of induction motors. In general, induction motors have a specific character that operation efficiency is dropped sharply at the light roads condition. Consequently, if the induction motor is controlled by high efficiency using the VVVF(variable voltage variable frequency) control methods at optimal values, the entire system can obtain the substantial energy savings from the efficiency improvement in induction motors. In this paper, optimal slip is derived from the modeling of an induction motor and the optimal hybrid-control method is suggested by the simulation of the proposed algorithm for a 3-phase induction motor.

  • PDF

A New Approach of BLDC Motor Using Unidirectional Current in the Driver Circuit and its Future Prospects

  • Yasuhiro, Komatsu;Zawawi, Syed Abdul Kadir
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • 제1권1호
    • /
    • pp.91-98
    • /
    • 2012
  • Climate change and other pollutions make a huge demand of environment friendly and high efficient motors especially Brushless DC (BLDC) motors. Generally, bidirectional energized BLDC motors are used widely; however, inverter devices used in the driver put fear of being effected by noise. This paper proposes unidirectional energized BLDC motor which utilizes asymmetrical H-bridge circuit as the driver circuit. The Minato motor is one of the pioneers in unidirectional energized system. The use of bar magnets in the rotor is one of the biggest disadvantages of the motor. We proposed using tabular magnets. The paper compares the power consumption and efficiency of the Minato motor and the proposed motor. During high speed rotation, undesirable armature current is generated that has a deceleration characteristic. This current lowers the motor's efficiency. In this paper, we propose the solutions and show comparison through equations of the copper loss ratio for the Minato and our proposed motors. The third motor, which has the highest efficiency, was discovered during examination of the equations.

A Study on Driving Simulation and Efficiency Maps with Nonlinear IPMSM Datasets

  • Kim, Won-Ho;Jang, Ik-Sang;Lee, Ki-Doek;Im, Jong-Bin;Jin, Chang-Sung;Koo, Dae-Hyun;Lee, Ju
    • Journal of Magnetics
    • /
    • 제16권1호
    • /
    • pp.71-73
    • /
    • 2011
  • Hybrid electric vehicles have attracted much attention of late, emphasizing the necessity of developing traction motors with a high input current and a wide speed range. Among such traction motors, various researches have been conducted on interior permanent-magnet synchronous motors (IPMSMs) with high power density and mechanical solidity. Due to the complexity of its parameters, however, with nonlinear motor characteristics and current vector control, it is actually difficult to accurately estimate the base speed within an actual operating speed range or a voltage limit. Moreover, it is impossible to construct an efficiency map as the efficiency differs according to the control mode. In this study, a simulation method for operation performance considering the nonlinearity of IPMSM was proposed. For this, datasets of various nonlinear parameters were made via the finite-element method and interpolation. Maximum torque-per-ampere and flux-weakening control were accurately simulated using the datasets, and an IPMSM efficiency map was accurately constructed based on the simulation. Lastly, the validity of the simulation was verified through tests.

차세대 고속전철용 영구자석동기 전동기 개발 (Development of Permanent Magnet Synchronous Motor for High-speed Electric Multiple Unit - 400km/h eXperimen)

  • 김정철;김봉철;박영호;김철호
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2010년도 춘계학술대회 논문집
    • /
    • pp.470-474
    • /
    • 2010
  • Up until now, power centralized trains have been produced due to the maintenance convenience and comfortableness, but there are some problems, such as limitation of viscosity and maintenance difficulty of railroad due to recently increasing axle mass. In order to improve the problems, power decentralized trains have been developed to improve traction power. In the case of using electrical braking system, it is possible to improve braking friction power. Induction motors have been developed for power decentralized high speed train because of less structural defection, and low maintenance and production cost. However, induction motors have limitations, such as assuring enough power capacity and efficiency with reduced size. PMSM (Permanent magnet synchronous motor) have been newly developed to improve shortcomings of induction motors. The PMSM can be produced small and light weighted. Also if the PMSM and induction motors have the same size and power capacity, the PMSM have better power efficiency. In this pater, the prototype and modified type of PMSM for "High-speed Electric Multiple Unit-400km/h eXperimmen" will be introduced.

  • PDF

Application and Market of High-Speed Electrical Machines

  • Kang, Do-Hyun;Larisa, Strete
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2005년도 ICCAS
    • /
    • pp.616-620
    • /
    • 2005
  • The technology of high-speed electrical machines is particularly relevant to applications involving electrical power generation and high-speed motors with high power density and high efficiency. Due to the development of improved materials for electrical machines, power electronic elements and design technology, the high-speed electrical machines are being rapidly introduced into industrial applications. The introduction of high-speed electrical machines has created a new market for electrical machines and will, as an application, contribute to the development of modern electrical machines. This paper deals with applications and market trends and KERI's activities in high-speed electrical machines.

  • PDF

차세대 도시철도 직접구동전동기 개발 (A Study on Development of Direct Drive Motor for Advanced Urban Transit System)

  • 김길동;오세찬;이장무;이한민;박현준
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2008년도 추계학술대회 논문집 전력기술부문
    • /
    • pp.141-143
    • /
    • 2008
  • Due to the demand for high-output motors in the limited space between the wheels in an electric train, self-ventilating traction motors have been used for many years. periodical disassembly maintenance is necessary to remove the small quantities of dust that enter the motor from the open-air ventilation. Reducing this burden, as well as increasing efficiency and reducing noise, would benefit the next generation of moters To address these needs, KRRI is developing a fully enclosed type traction motor, a fully enclosed type traction motor with outer fans, a high-efficiency permanent-magnet synchronous motor and a direct-drive motor(DDM) as traction motors for the next generation of trains.

  • PDF

차세대전동차용 직접구동전동기 개발 (Development of Direct Drive Motor for Next Generation Train)

  • 김길동;이한민;이장무;오세찬;정의진
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2009년도 춘계학술대회 논문집
    • /
    • pp.688-694
    • /
    • 2009
  • As a drive system for next generation train, we have been making research and development of a direct drive traction motor system without the conventional reduction gear. This traction motor is expected to have many advantages such as low noise, reduced maintenance, and energy saving. Due to the demand for high-output motors in the limited space between the wheels, open-ventilating traction motors with gear box have been widely used for many years. However, a conventional open-ventilating traction motor is necessary periodical disassembly to remove the accumulated dust from open-air ventilation. Reducing this burden, as well as increasing energy efficiency and reducing noise, would benefit the next generation of traction motors. To address these needs, KRRI have been developing a fully enclosed type direct drive motor(DDM) with high-efficiency permanent magnet for the next generation train.

  • PDF