• Title/Summary/Keyword: High volume fly-ash

Search Result 124, Processing Time 0.029 seconds

The Experimental Study on the Fluidity Properties of Mortar Using Basalt Fiber and High Volume Fly Ash (바잘트 섬유 및 하이볼륨 플라이애시를 사용한 모르타르의 유동특성에 관한 실험적 연구)

  • Choi, Yun-Wang;Oh, Sung-Rok;Park, Man-Seok;Choi, Byung-Keol
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.2 no.4
    • /
    • pp.345-353
    • /
    • 2014
  • This study was evaluated influence of fluidity properties according to basalt fiber and high volume fly ash in the mortar level, as part of a basic study for development of fiber reinforced concrete using basalt fiber and high volume fly ash. In the first step, it was evaluated that fluidity properties of mortar according to replacement ratio 6 level of fly ash(10, 20, 30, 40, 50 and 60mass%) and fluidity properties of mortar according to content 5 levels of SP(1.3, 1.5, 1.7, 1.9 and 2.1%) and content 5 levels of VA(0.2, 0.4, 0.6, 0.8 and 1.0%) for dispersion of the basalt fiber, in the second step, it was evaluated that fluidity properties of mortar using High-volume fly ash (50mass%) on 3 levels of basalt fiber length (6, 20 and 30mm). Results of assessment, if after a fiber mixed, it showed that viscosity agent is more effective to improve the fluidity and fiber dispersion than superplasticizer, high volume fly ash (50%) applying the mixing, due to three properties of fly ash, showed that the improved fiber dispersibility and flow improvement.

Experiment of Shear Behavior of Reinforced Concrete Beams with High Volume Fly Ash (하이 볼륨 플라이애쉬 철근콘크리트 보의 전단거동 실험)

  • Yoo, Sung-Won;Lee, Hyung-Jib
    • Journal of the Korea Concrete Institute
    • /
    • v.26 no.4
    • /
    • pp.525-532
    • /
    • 2014
  • It is known that the best way to recycle fly ash is to use in concrete. It is impossible to bury in the ground this fly ash recently, so it is trying to use high volume fly ash concrete. Nevertheless, recent main research topics are focused in the part of material only, however, it is necessary to perform the research about structural shear behavior. Therefore, in this paper, 27 test members were manufactured with 3 test variables, namely fly ash replacement ratio 0, 35%, 50%, concrete compressive strength 20, 40, 60 MPa and 3 shear stirrups amounts. 27 test members were tested for shear behavior. From the test results, there were no differences between 35%, 50% high volume fly ash cement concrete and ordinary concrete without fly ash (FA=0%).

The Analysis of Slope Stability on Clay-Fly Ash Mixtures Embankment (점토-Fly Ash 혼합물로 된 제체의 사면안정 해석(지반공학))

  • 권무남;정성욱;김현기
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2000.10a
    • /
    • pp.477-483
    • /
    • 2000
  • Fly ash is the unburned residue resulting from the combustion of coal in utility and industrial boilers such as thermal power plants. Annually about 5 million tons of fly ash is being produced in korea. Less than 25 percent of total volume of fly ash is currently being used effectively for some ways. In the future, the volume of fly ash discharge from thermal power stations will be increasing more and more, and the development of the utilization of high volume fly ash is required. Fly ash has a lower compacted density and specific gravity than coarse grained natural aggregates but equivalent strength properties indicating that the fly ash could be used as a structural fill materials. So, clay-fly ash mixtures can be used as a fill material in the construction of embankments. Laboratory tests have been carried out to determine the physical, chemical, and geotechnical characteristics of the clay and fly ash. The fly ash is mixed with the clay in different proportions and the geotechnical characteristics of the mixtures have been studied also. In this study describes the results of the experimental study. The implications of the use of clay and clay-fly ash mixtures on the stability of embankments are discussed.

  • PDF

The Characteristic of Strength Development of High Volume Fly-Ash Concrete (플라이애쉬 치환율이 높은 콘크리트의 압축강도 발현 특성)

  • Park, Chan-Kyu;Lee, Seung-Hoon;Kim, Han-Jun
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2007.11a
    • /
    • pp.67-70
    • /
    • 2007
  • In this study, the characteristic of strength development of high volume fly ash concrete(HVFAC) was experimentally investigated. The production of one ton of portland cement releases about 0.87ton of CO2 into the atmosphere. HVFAC is an emerging material technology and is environmentally friendly because of its reduced use of portland cement, reduced CO2 emissions. For this purpose, two levels of W/B were selected. Seven levels of fly ash replacement ratios and two levels of silica fume replacement ratios were adopted. In the concrete mix, the water content of 125kg/m3 was used, which is less than that of usual water content. As a result, it was observed that the slump of concrete was increased with the increasing fly ash replacement ratio and when the silica fume was incorporated into the concrete, the slump was significantly decreased at the same condition. It appeared that the compressive strength gradually decreased with increasing fly ash replacement ratio at the early age, but the difference of strength up to replacement ratio of 50% was little at the age of 91 days because of the pozzolanic reaction of fly ash.

  • PDF

Properties of Flowable High-volume Fly Ash-Cement Composites (다량의 플라이애쉬를 사용한 유동성 시멘트복합체의 특성)

  • 원종필;신유길;안태송
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1998.10c
    • /
    • pp.105-110
    • /
    • 1998
  • The purpose of this was to examine the used of fly ash as a type of construction material. In this paper the results from a recent study on development of a cement composite utilizing relatively large amount of fly ash are presented. The flowable fly ash-cement sand composite was investigated for strength and flowability characteristics. The independent variable considered were: fly-ash content, sand content, and ratio of water to cementitious materials. Results of this study show that high volume fly-ash composite can be proportioned to obtain 10~15kg/$\textrm{cm}^2$ compressive strength at 28 days. For applications requiring strength between 10kg/$\textrm{cm}^2$ and 15kg/$\textrm{cm}^2$, the mixture with fly ash-cement ratio of 5.6 and sand-cement ratio of 28 with relatively high water content may be used. Slump was held at 25$\pm$1cm for all mixtures produced compressive strength at 28 days were found to range from 5kg/$\textrm{cm}^2$ to 13.7kg/$\textrm{cm}^2$.

  • PDF

A Study on Strength of Cement Mortar with Micro Grinding High Volume Fly-Ash (플라이애쉬를 다량 사용한 시멘트 경화체의 강도증진에 관한 실험적연구)

  • 정재동
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2001.11a
    • /
    • pp.82-87
    • /
    • 2001
  • The purpose of this study is for the active use of the fly ash, which is a by-product of the combustion pulverizes coal thermal power plants, to compensate for the lack of landfill and for conservation of energy, by using fly ash as the supplementary cementitious material, and to prove its possibility as the related products of the cement. First of all, the ordinary fly ash is grinded in a special method and its fineness is controlled from 6000$\textrm{cm}^2$/g to 8000$\textrm{cm}^2$/g, then replaced it with the 10% to 80% of the cement mortar in order to test physics characteristics. The first experiment conducts on the strength development in fly ash replacing content and fineness. and the changes of the flow values, incorporating fly ash into cement. The second one is about the slow development of the strength of the fly ash mortar in early ages, and improves its strength with the activator $Na_{2}SO_{4}$, using high volume fly ash.

  • PDF

Experiment of Flexural Behavior of Reinforced Concrete Beams with High Volume Fly Ash (하이 볼륨 플라이애쉬 철근콘크리트 보의 휨거동 실험)

  • Yoo, Sung-Won;Lee, Hyung-Jib
    • Journal of the Korea Concrete Institute
    • /
    • v.26 no.3
    • /
    • pp.323-329
    • /
    • 2014
  • It is known that the best way to recycle fly ash is to use in concrete. It is impossible to bury in the ground this fly ash recently, so it is trying to use high volume fly ash concrete. Nevertheless, recent main research topics are focused in the part of material only, however, it is necessary to perform the researches about elasticity modulus, stress-strain relationship and structural behavior. Therefore, in this paper, 18 test members were manufactured with 3 test variables, namely fly ash replacement ratio 0, 35, 50%, concrete compressive strength 20, 40, 60 MPa and 2 tensile steel ratio. 18 test members were tested for flexural behavior. From the test results, there were no differences between 35, 50% high volume fly ash cement concrete and ordinary concrete without fly ash(FA=0%).

Durability Characteristics of Low Strength Fly ash-Cement Composites (저강도 플라이애시-시멘트 복합체의 내구특성)

  • 원종필;신유길;이용수;안태송
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.04a
    • /
    • pp.142-147
    • /
    • 2000
  • Durability characteristics of controlled low strength material(flowable fill) with high volume fly ash content was examined. The mix proportions used for flowable fill are selected to obtain low-strength material in the 10 to 15kgf/㎥ range. The optimized flowable fill was consisted of 60kgf/㎥ cement content, 280kgf/㎥ fly ash content, 1400kgf/㎥sand content, and 320kgf/㎥water content. Subsequently, durability tests including permeability warm water immersion, repeated wetting & drying, freezing & thawing for high volume fly ash-flowable fill are conducted The test results indicated that flowable fill has has acceptable durability characteristics.

  • PDF

Resistance to Corrosion of Reinforcement of High Volume Fly Ash Concrete

  • Kwon, S.O.;Bae, S.H.;Lee, H.J.;Lee, K.M.;Jung, S.H.
    • Corrosion Science and Technology
    • /
    • v.13 no.6
    • /
    • pp.209-213
    • /
    • 2014
  • Due to the increasing of interest about the eco-friendly concrete, it is increased to use concretes containing by-products of industry such as fly ash(FA), ground granulated blast furnace slag(GGBFS), silica fume(SF), and etc. Especially, these are well known for improving the resistances to reinforcement corrosion in concrete and decreasing chloride ion penetration. The purpose of this experimental research is to evaluate the resistance against corrosion of reinforcement of high volume fly ash(HVFA) concrete which is replaced with high volume fly ash for cement volume. For this purpose, the concrete test specimens were made for various strength level and replacement ratio of FA, and then the compressive strength and diffusion coefficient for chloride ion of them were measured for 28, 91, and 182 days, respectively. Also, corrosion monitoring by half cell potential method was carried out for the made lollypop concrete test specimens to detect the time of corrosion initiation for reinforcement in concrete. As a result, it was observed from the test results that the compressive strength of HVFA concrete was decreased with increasing replacement ratio of FA but long-term resistances against reinforcement corrosion and chloride ion penetration of that were increased.

An Experimental Study on the Properties of High Volume Fly Ash Concrete (플라이애시를 대량 사용한 콘크리트의 특성에 관한 실험적 연구)

  • Choi, Se-Jin;Jang, Jong-Ho;Choi, Sung-Woo;Choi, Hee-Yong;Park, Sun-Gyu;Kim, Moo-Han
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.10a
    • /
    • pp.549-554
    • /
    • 2000
  • Generally, it is indicated that concrete using fly ash as a part of cement content has lower early strength, and faster carbonation velocity. To improve these problems and provide useful information for high volume fly ash concrete, the properties of concrete - those include slump, bleeding, setting time, compressive strength and carbonation depth etc. - which contained large amount of fly ash as a part of fine aggregate were investigated experimentally. According to test results, it was found that the compressive strength of the concrete increased in early age as well as in long term age with the increase of the fly ash content. And the carbonation depth of concrete using fly ash as a part of fine aggregate was lower than that of plain concrete(FA 0kg/ $\textrm{m}^3$).

  • PDF