• Title/Summary/Keyword: High volume fly ash concrete

Search Result 108, Processing Time 0.021 seconds

Development of lightweight concrete using the PCM II : Investigation on Foam Volume/Fly Ash Relationship of Foam Concrete, and Effect of High Content Micro Polypropylene Fiber and Microstructure

  • Lim, Myung-Kwan;Enkhbold, odontuya;Choi, Dong-Uk
    • KIEAE Journal
    • /
    • v.15 no.4
    • /
    • pp.45-52
    • /
    • 2015
  • Purpose: Foam concrete is the concrete that contains large amount of air voids inside. In general, the density of foam concrete depends on parameters like water/binder ratio, foam volume, aggregate and pozzolan content, etc. Method: In this study, the effect of foam volume and fly ash content on dry density is investigated intensively in order to find the relationship between each parameter and their abilities to counteract with each other. According to the above information, though there are quite a number of studies on the effect micro fiber on foam concrete at low volume fractions, there is still lack of information especially on the high fiber content side. The objective of the second study is to investigate further on the use of micro fiber at higher volume fraction and fill in the lacking information. Beside from this study, the investigation of the effect of micro-fiber (polypropylene) to enhance the properties of foam concrete is also carried out. Result: Of the two variables that are investigated in this study, the foam volume and the fly ash content, show significant effect on the properties of foam concrete. The foam volume tends to decrease the density and strength of foam concrete. In the second part of our study, a large fibre volume fraction is proved to be able to evidently increase the flexural strength of foam concrete up to about 40% due to the effect of fibre bridging over the crack and a significant number of fibres that intercepts the crack surfaces. However, the compressive strength is found to decrease severely due to the occurrence of large pores as the result of fibre being added into concrete mixture.

The properties of High Performance Concrete Using Fly Ash and Blast-Furnace Slag (플라이애쉬 및 고로슬래그를 사용한 고성능콘크리트의 특성)

  • 이승한;정용욱;박정준
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1998.10a
    • /
    • pp.275-280
    • /
    • 1998
  • In this study, to increase fluidity and resistance of segregation of materials, the effect of each of the materials, which have effects on high performance concrete from investigating the properties of strength and drying shrinkage of high performance concrete made by the basic mix proportion used fly-ash and ground granulated blast-furnace slag after hardening, has been checked. By the results of this experiment, fluidity on W/C=34% was satisfied within slump-flow 65$\pm$5cm and U-type self-compacting difference 5cm. On the properties of strength, high performance concrete produced compressive strength over 400kg/$\textrm{cm}^2$ in 28days when powder was replaced by 40% of fly-ash and 60% of ground granulated blast-furnace slag. And compressive strength was taken over 600kg/$\textrm{cm}^2$ equal to non-replacement in 91days. Also, the length change of concrete with the addition of fly-ash was smaller than that without it. Therefore, it may be effective on the decrease of drying shrinkage volume.

  • PDF

Effect of Powder and Aggregates on Compactability of High Performance Concrete

  • Lee, Seung-Han;Han, Hyung-sub
    • KCI Concrete Journal
    • /
    • v.11 no.3
    • /
    • pp.19-28
    • /
    • 1999
  • This study treated self-compacting high Performance concrete as two Phase materials of Paste and aggregates and examined the effect of powder and aggregates on self-compacting high performance, since fluidity and segregation resistance of fresh concrete are changed mainly by paste. To improve the fluidity and self-compactibility of concrete, optimum powder ratio of self-compacting high performance concrete using fly ash and blast-furnace slag as powders were calculated. This study was also designed to provide basic materials for suitable design of mix proportion by evaluating fluidity and compactibility by various volume ratios of fine aggregates, paste, and aggregates. As a result, the more fly ash was replaced, the more confined water ratio was reduced because of higher fluidity. The smallest confined water ratio was determined when 15% blast-furnace slag was replaced. The lowest confined water ratio was acquired when 20% fly ash and 15% blast-furnace slag were replaced together. The optimum fine aggregates ratio with the best compactibility was the fine aggregate ratio with the lowest percentage of void in mixing coarse aggregate and fine aggregate In mixing the high performance concrete. Self-compacting high performance concrete with desirable compactibility required more than minimum of unit volume weight. If the unit volume weight used was less than the minimum, concrete had seriously reduced compactibility.

  • PDF

Durability Characteristics of Controlled Low Strength Material(Flowable Fill) with High Volume Fly Ash Content (다량의 플라이 애쉬를 사용한 저강도 고유동 충전재의 내구특성에 관한 연구)

  • 원종필;신유길
    • Journal of the Korea Concrete Institute
    • /
    • v.12 no.1
    • /
    • pp.113-125
    • /
    • 2000
  • The purpose of this study was to examine the durability characteristics of controlled low strength material(flowable fill) with high volume fly ash content. Flowable fill refer to self-compacted, cementitious material used primarily as a backfill in lieu of compacted fill. The two primary advantages of flowable fill over traditional methods are its ease of placement and the elimination of settlement. Therefore, in difficult compaction areas or areas where settlement is a concern, flowable fill should be considered. The fly ash used in this study met the requirements of KS L 5405 and ASTM C 618 for Class F material. The mix proportions used for flowable fill are selected to obtain low-strength materials in the 10 to 15kgf/$\textrm{cm}^2$ range. The optimized flowable fill was consisted of 60kg f/$\textrm{m}^3$ cement content, 280kgf/$\textrm{m}^3$ fly ash content, 1400kgf/$\textrm{m}^3$ sand content, and 320kgf/$\textrm{m}^3$ water content. Subsequently, durability tests including permeability, warm water immersion, repeated wetting & drying, freezing & thawing for high volume fly ash-flowable fill are conducted. The results indicated that flowable fill has acceptable durability characteristics.

Flexural Behavior of RC Beam Using High Volume Fly-Ash Cement (다량치환된 플라이애시 시멘트를 사용한 철근콘크리트 보의 휨거동)

  • Ahn, Young-Sun;Cha, Yeong-Dal
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.2 no.2
    • /
    • pp.128-136
    • /
    • 2014
  • It is known that the best way to recycle fly ash is to use in concrete. It is impossible to bury in the ground this fly ash recently, so it is trying to use high volume fly ash concrete. Nevertheless, recent main research topics are focused in the part of material only. However, it is necessary to perform the researches about elasticity modulus, stress-strain relationship and structural behavior. Therefore, in this paper, 18 test members were manufactured with 3 test variables, namely fly ash replacement ratio 0, 35, 50%, concrete compressive strength 20, 40, 60MPa and 2 tensile steel ratio. 18 test members were tested for flexural behavior. From the test results, there were no differences between 35, 50% high volume fly ash cement concrete and ordinary concrete without fly ash (FA=0%). In order to evaluate the HVFAC flexural behavior, Analytical model was proposed and the computer program was developed. There were no differences between test results and analysis results. So, the proposed analytical model was reasonable.

The Experimental Study on Early Strength Properties of High Volume Fly-Ash Concrete (플라이애쉬를 다량 치환한 콘크리트의 초기강도성상에 관한 실험적 연구)

  • 이동하;김상미;강태경;백민수;이영도;정상진
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2002.10a
    • /
    • pp.281-286
    • /
    • 2002
  • To study of binder and fine aggregate a lot of replacement fly-ash concrete, initial characteristics, standard environment of curing temperature $20^{\circ}C$, hot-weather environment of curing temperature $35^{\circ}C$, . Flesh concrete tested slump. air contest and Hardening concrete valuated setting period of form, day of age 1, 3, 5. 7, 10, 28 compression strength in sealing curing. Purpose of study is consultation materials in field that variety of fly-ash replacement concrete mix proportion comparison and valuation. (1) Experiment result age 28day compression strength more higher plan concrete then standard environment in curing temperature $20^{\circ}C$, , most strength F43 is hot-weather environment in curing temperature $35^{\circ}C$, replacement binder 25%, fine aggregate 15%. (2) Hot-weather environment replacement a mount of fly-ash is a same of plan concrete setting period of form. Age 28day compression strength replacement a mount of fly-ash more hot-weather concrete then plan concrete.

  • PDF

The Experimental Study on Neutralization Properties of High Volume Fly-Ash Concrete (플라이 애쉬를 다량 치환한 콘크리트의 중성화 특성에 관한 실험적 연구)

  • 백민수;김우상;김종원;김제섭;김성식;정상진
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.05a
    • /
    • pp.69-74
    • /
    • 2003
  • This study evaluated durability through measurement of substituted test piece's pH degree and experiments of neutralization. Comparing and evaluating cared test piece's pH degrees which we got before the neutralization and after the neutralization. After evaluating neutralization depth through neutralization, evaluating neutralization properties by Fly Ash replacement ratio. pH degree was decreased by cement replacement ratio of Fly Ash. And in the case of substitution of the same amount of Fly Ash, fine aggregate replacement ratio was increased. When the test piece, which had been cared in high temperature, was promoted to neutralization, Among the test piece which was replaced with Fly Ash 40%, the test piece which has high rate of fine aggregate proved opposition of neutralization Through the test, Ⅰ summarized that the test piece cared in high temperature was mostly effected by compress strength, the test piece cared in low temperature was mostly effected by pH degree.

  • PDF

Strength Properties by Curing Temperature of High Volume Fly-Ash Concrete (플라이애쉬를 다량 치환한 콘크리트의 양생온도에 따른 강도성상)

  • 이동하;정근호;백민수;김성식;임남기;정상진
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2002.11a
    • /
    • pp.63-66
    • /
    • 2002
  • In this study, it does a high volume flyash substituted concrete experiments in two curing temperature circumstances - 35$^{\circ}C$, 2$0^{\circ}C$. High volume flyash concrete is tested in fresh concrete properties and hardeded concrete properties. In the fresh concrete test items, there is slump, air contents, concrete setting tests. 3, 7, and 28 days water curing compressive strength is measured in the hardened concrete test. The purpose of this study is to submit a various flyash concrete data for application to field. The result of this study is that the best strength is developed at the plain concrete cured 2$0^{\circ}C$ and Mixing F43 shows the best strength among specimens which cured at 35$^{\circ}C$

  • PDF

The Experimental Study on the Fluidity Properties of Mortar Using Basalt Fiber and High Volume Fly Ash (바잘트 섬유 및 하이볼륨 플라이애시를 사용한 모르타르의 유동특성에 관한 실험적 연구)

  • Choi, Yun-Wang;Oh, Sung-Rok;Park, Man-Seok;Choi, Byung-Keol
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.2 no.4
    • /
    • pp.345-353
    • /
    • 2014
  • This study was evaluated influence of fluidity properties according to basalt fiber and high volume fly ash in the mortar level, as part of a basic study for development of fiber reinforced concrete using basalt fiber and high volume fly ash. In the first step, it was evaluated that fluidity properties of mortar according to replacement ratio 6 level of fly ash(10, 20, 30, 40, 50 and 60mass%) and fluidity properties of mortar according to content 5 levels of SP(1.3, 1.5, 1.7, 1.9 and 2.1%) and content 5 levels of VA(0.2, 0.4, 0.6, 0.8 and 1.0%) for dispersion of the basalt fiber, in the second step, it was evaluated that fluidity properties of mortar using High-volume fly ash (50mass%) on 3 levels of basalt fiber length (6, 20 and 30mm). Results of assessment, if after a fiber mixed, it showed that viscosity agent is more effective to improve the fluidity and fiber dispersion than superplasticizer, high volume fly ash (50%) applying the mixing, due to three properties of fly ash, showed that the improved fiber dispersibility and flow improvement.

Characteristics for Reinforcement Corrosion and Chloride Ion Diffusion of High Volume Fly Ash Concrete (하이볼륨 플라이애시 콘크리트의 철근부식 및 염소이온 확산 특성)

  • Kwon, Soon-Oh;Bae, Su-Ho;Lee, Hyun-Jin;Jung, Sang-Hwa
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.2 no.1
    • /
    • pp.34-39
    • /
    • 2014
  • The purpose of this experimental research is to evaluate the resistance of reinforcement corrosion and chloride ion penetration of high volume fly ash (HVFA) concrete. For this purpose, concrete test specimens were made for various strength level and replacement ratio of fly ash, and then compressive strength and diffusion coefficient for chloride ion of them were measured for 28, 91 and 182 days, respectively. Also, corrosion monitoring by half cell potential method was carried out for the made lollypop concrete test specimens to detect the time of corrosion initiation for reinforcement in concrete. As a result, it was observed from the test results that compressive strength of HVFA concrete was decreased with increasing replacement ratio of fly ash but long-term resistance against reinforcement corrosion and chloride ion penetration of that was increased.