• Title/Summary/Keyword: High voltage pulse current

Search Result 420, Processing Time 0.025 seconds

Analysis of Insulation Characteristics of Low-Voltage Induction Motors Fed by Pulse-Controlled Inverters (인버터 구동형 저압 유동전동기의 절연특성 분석)

  • 박도영
    • Proceedings of the KIPE Conference
    • /
    • 2000.07a
    • /
    • pp.195-198
    • /
    • 2000
  • In this paper the insulation characteristics test results of 25 low-voltage induction motors($3\phi$, 5HP, 380V) are presented. Five different types of insulation techniques are applied to 25 motors. The maximum partial discharge (PD) magnitude ($\textrm{Q}_{m}$) discharge inception voltage (DIV) dissipation factor tip-up ($\Delta$tan$\delta$) and rate of change in AC current($\Delta$I) are measured by PD and AC current tests. Also the insulation breakdown tests by high voltage pulse are performed and the corresponding breakdown voltage are obtained.

  • PDF

Full Wave Cockroft Walton Application for Transcranial Magnetic Stimulation

  • Choi, Sun-Seob;Kim, Whi-Young
    • Journal of Magnetics
    • /
    • v.16 no.3
    • /
    • pp.246-252
    • /
    • 2011
  • A high-voltage power supply has been built for activation of the brain via stimulation using a Full Wave Cockroft-Walton Circuit (FWCW). A resonant half-bridge inverter was applied (with half plus/half minus DC voltage) through a bidirectional power transistor to a magnetic stimulation device with the capability of producing a variety of pulse forms. The energy obtained from the previous stage runs the transformer and FW-CW, and the current pulse coming from the pulse-forming circuit is transmitted to a stimulation coil device. In addition, the residual energy in each circuit will again generate stimulation pulses through the transformer. In particular, the bidirectional device modifies the control mode of the stimulation coil to which the current that exceeds the rated current is applied, consequently controlling the output voltage as a constant current mode. Since a serial resonant half-bridge has less switching loss and is able to reduce parasitic capacitance, a device, which can simultaneously change the charging voltage of the energy-storage condenser and the pulse repetition rate, could be implemented. Image processing of the brain activity was implemented using a graphical user interface (GUI) through a data mining technique (data mining) after measuring the vital signs separated from the frequencies of EEG and ECG spectra obtained from the pulse stimulation using a 90S8535 chip (AMTEL Corporation).

Pulse Width and Pulse Frequency Modulated Soft Commutation Inverter Type AC-DC Power Converter with Lowered Utility 200V AC Grid Side Harmonic Current Components

  • Matsushige T.;Ishitobi M.;Nakaoka M.;Bessyo D.;Yamashita H.;Omori H.;Terai H.
    • Proceedings of the KIPE Conference
    • /
    • 2001.10a
    • /
    • pp.484-488
    • /
    • 2001
  • The grid voltage of commercial utility power source hi Japan and USA is 100rms, but in China and European countries, it is 200rms. In recent years, In Japan 200Vrms out putted single phase three wire system begins to be used for high power applications. In 100Vrms utility AC power applications and systems, an active voltage clamped quasi-resonant Inverter circuit topology using IGBTs has been effectively used so far for the consumer microwave oven. In this paper, presented is a half bridge type voltage-clamped high-frequency Inverter type AC-DC converter using which is designed for consumer magnetron drive used as the consumer microwave oven in 200V utility AC power system. This zero voltage soft switching Inverter can use the same power rated switching semiconductor devices and three-winding high frequency transformer as those of the active voltage clamped quasi-resonant Inverter using the IGBTs that has already been used for 100V utility AC power source. The operating performances of the voltage source single ended push pull type Inverter are evaluated and discussed for consumer microwave oven. The harmonic line current components In the utility AC power side of the AC-DC power converter operating at ZVS­PWM strategy reduced and improved on the basis of sine wave like pulse frequency modulation and sine wave like pulse width modulation for the utility AC voltage source.

  • PDF

Development of High Flux Metal Ion Plasma Source for the Ion Implantation and Deposition

  • Kim, Do-Yun;Lee, Eui-Wan
    • Journal of Korean Vacuum Science & Technology
    • /
    • v.7 no.2
    • /
    • pp.45-56
    • /
    • 2003
  • A high flux metal plasma pulse ion source, which can simultaneously perform ion implantation and deposition, was developed and tested to evaluate its performance using the prototype. Flux of ion source was measured to be 5 A and bi-polar pulse power supply with a peak voltage of 250 V, repetition of 20 Hz and width of 100 ${\mu}\textrm{s}$ has an output current of 2 kA and average power of 2 kW. Trigger power supply is a high voltage pulse generator producing a peak voltage of 12 kV, peak current of 50 A and repetition rate of 20 Hz. The acceleration column for providing target energy up to ion implantation is carefully designed and compatible with UHV (ultra high vacuum) application. Prototype systems including various ion sources are fabricated for the performance test in the vacuum and evaluated to be more competitive than the existing equipments through repeated deposition experiments.

  • PDF

Design of PFM Boost Converter with Dual Pulse Width Control (이중 펄스 폭을 적용한 PFM 부스트 변환기 설계)

  • Choi, Ji-San;Jo, Yong-Min;Lee, Tae-Heon;Yoon, Kwang-Sub
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.40 no.9
    • /
    • pp.1693-1698
    • /
    • 2015
  • This paper proposed a PFM(pulse-frequency modulator) boost converter which has dual pulse-width. The PFM boost converter is composed of BGR(band gap voltage reference generating circuit), voltage reference generating circuit, soft-start circuit, error amplifier, high-speed comparator, inductor current sensing circuit and pulse-width generator. Converter has different inductor peak current so it has wider load current range and smaller output voltage ripple. Proposed PFM boost converter generates 18V output voltage with input voltage of 3.7V and it has load current range of 0.1~300mA. Simulation results show 0.43% output voltage ripple at ligh load mode and 0.79% output voltage ripple at heavy load mode. Converter has efficiency 85% at light lode mode and it has maximum 86.4% at 20mA load current.

A solid-state switch based high-voltage pulsed power supply (반도체 스위치형의 고전압 펄스 전원장치)

  • Kim, Guang-Hoon;Lee, Hong-Sik;Sytykh, D.;Rim, Geun-Hie
    • Proceedings of the KIEE Conference
    • /
    • 2001.04a
    • /
    • pp.215-217
    • /
    • 2001
  • This paper describes an all solid-state switch pulse generator for various applications where square pulse voltage is required. The pulse generator produces various voltage pulses: voltage $5{\sim}100kV$. current $10{\sim}200A$, pulse width $1{\sim}10{\mu}sec$, repetition rate up to 500Hz. The output power is the combination of these parameters up to 10kW. It consists of a DC-DC converter and several pulse generating modules which are connected in series to obtain higher pulse voltage. Each module contains semiconductor switches (IGBT's), energy storage capacitors and control units to trigger switches. The structure and operational principle are described and the protection circuit for reliable operation is suggested. Experimental results show that the pulse generator can be used for applications with nonlinear loads.

  • PDF

Development of Ozone Generating System Applying Forward Type High Voltage Pulse Power Supply (Forward형 고압펄스 전원장치를 적용한 오존발생 시스템 의 개발)

  • 김동희;원재선;김경식;이광식;정도영;오승훈
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.52 no.7
    • /
    • pp.335-342
    • /
    • 2003
  • This paper presents a forward type high voltage pulse power supply for high voltage small current, which can be designed as a simple circuit configuration and managed easily using Power-MOSFET in the view of commercialization. According to the switching frequency, coupling factor(k) and duty ratio(D), the Principle of basic operation and the characteristics of the proposed pulse power supply are estimated. Simulation results have demonstrated the feasibility of the proposed pulse power supply. Also experimental results are presented to verify theoretical discussion with a lamp type ozonizer as a load. For studying the application at the part of environment of water, When ozonizer gas reacts with a colon bacillus, the sterilization characteristics of a colon bacillus according to the ozone concentration and response time have been investigated. This proposed pulse power supply will be able to be practically used as a pulse power supply in various environment improvement facilities like sterilization of colon bacillus, deodorization, and Nox gas elimination.

Starting Current Application for Magnetic Stimulation

  • Choi, Sun-Seob;Bo, Gak-Hwang;Kim, Whi-Young
    • Journal of Magnetics
    • /
    • v.16 no.1
    • /
    • pp.51-57
    • /
    • 2011
  • A power supply for magnetic-stimulation devices was designed via a control algorithm that involved a start current application based on a resonant converter. In this study, a new power supply for magnetic-stimulation devices was designed by controlling the pulse repetition frequency and pulse width. The power density could be controlled using the start-current-compensation and ZCS (zero-current switching) resonant converter. The results revealed a high-repetition-frequency, high-power magnetic-stimulation device. It was found that the stimulation coil current pulse width and that pulse repetition frequency could be controlled within the range of 200-450 ${\mu}S$ and 200-900 pps, respectively. The magnetic-stimulation device in this study consisted of a stimulation coil device and a power supply system. The maximum power of the stimulation coil from one discharge was 130 W, which was increased to 260 W using an additional reciprocating discharge. The output voltage was kept stable in a sinusoidal waveform regardless of the load fluctuations by forming voltage and current control using a deadbeat controller without increasing the current rating at the starting time. This paper describes this magnetic-stimulation device to which the start current was applied.

Design of the High Frequency Resonant Inverter for Corona Surface Processes

  • Choi, Chul-Yong;Lee, Dae-Sik
    • Proceedings of the Korea Society of Information Technology Applications Conference
    • /
    • 2005.11a
    • /
    • pp.119-122
    • /
    • 2005
  • A algorithm for control and performance of a pulse-density-modulated (PDM) series-resonant voltage source inverter developed for corona-dischange precesses is presented. The PDM inverter produces either a square-wave ac-voltage state or a zero-voltage state at its ac terminals to control the average output voltage under constant dc voltage and operating frequency. Moreover it can achieve zero-current-switching (ZCS) and zero-voltage-switching (ZVS) in all the operating condition for a reduction of switching lost. Even though the corona discharge load with a strong nonlinear characteristics, new high frequency resonant inverter is shown the wide range power control from 5% to 100%.

  • PDF

Measurement of High Voltage and Large Current Pulse Using Laser System (레이저를 이용한 펄스형 고전압 및 대전류 측정)

  • Lee, Yoon-Seok;Chang, Yong-Moo;Kim, Jung-Tae;Koo, Ja-Yoon;Kang, Hyung-Boo
    • Proceedings of the KIEE Conference
    • /
    • 1991.07a
    • /
    • pp.314-317
    • /
    • 1991
  • The waveforms of high voltage and current pulse were measured using laser measuring systems. Existing potential transformer and current transformer have low measuring precision because of resonance phenomena and waveform distortion due to the magnetic saturation. But using laser measurement, it is possible to obtain clear waveforms which have no effect of distortion and harmonic resonances. And electromagnetic interferences (EMI) in the measuring of high voltage and current pulse, but the optical measuring systems are not subjet to the influence of EMI. Using laser measuring systems based upon Pockels effect and Faraday effect is not free from any errors yet, but it could replace existing measuring systems by routine experiments and error corrections. And it needs that more research and development of optical crystals and equipments would be taken.

  • PDF