Mining sequential patterns is an important research issue in data mining and knowledge discovery with broad applications. However, the existing sequential pattern mining approaches consider only binary frequency values of items in sequences and equal importance/significance values of distinct items. Therefore, they are not applicable to actually represent many real-world scenarios. In this paper, we propose a novel framework for mining high-utility sequential patterns for more real-life applicable information extraction from sequence databases with non-binary frequency values of items in sequences and different importance/significance values for distinct items. Moreover, for mining high-utility sequential patterns, we propose two new algorithms: UtilityLevel is a high-utility sequential pattern mining with a level-wise candidate generation approach, and UtilitySpan is a high-utility sequential pattern mining with a pattern growth approach. Extensive performance analyses show that our algorithms are very efficient and scalable for mining high-utility sequential patterns.
높은 유틸리티 순차 패턴 탐사는 데이터 마이닝에서 중요한 연구 주제로 간주되고 있다. 이 주제에 대해 몇 개의 알고리즘들이 제안되었지만, 그것들은 높은 유틸리티 순차 패턴 탐사의 탐색 공간이 커지는 문제에 부딪히게 된다. 한 시퀀스의 더 엄격한 유틸리티 상한 값은 탐색 공간에서 초기에 유망하지 않은 패턴들을 더 가지치기할 수 있다. 본 논문에서 새로운 유틸리티 상한 값을 제안하는데, 그것은 한 시퀀스와 그 자손 시퀀스들의 최대 예상 유틸리티인 sequence expected utility (SEU)이다. 높은 유틸리티 순차 패턴들을 탐사하는데 필수적인 정보를 유지하기 위해 각 패턴에 대한 시퀀스 유틸리티 리스트를 새로운 자료구조로 사용한다. SEU를 활용하여 높은 유틸리티 순차 패턴들을 찾아내는 알고리즘인 High Sequence Utility List-Span (HSUL-Span)을 제안한다. 서로 다른 영역의 합성 데이터세트와 실제 데이터세트에 대한 실험 결과는 HSUL-Span이 상당히 적은 수의 후보 패턴들을 생성하고 실행 시간 면에서 다른 알고리즘들보다 우수한 것을 보여준다.
Mining high utility itemsets (HUIs) from transaction databases considers such factors as the unit profit and quantity of purchased items. Two-phase tree-based algorithms transform a database into compressed tree structures and generate candidate patterns through a recursive pattern-growth procedure. This procedure requires a lot of memory and time to construct conditional pattern trees. To address this issue, this study employs two compressed tree structures, namely, Utility Count Tree and String Utility Tree, to enumerate valid patterns and thus promote fast utility computation. Furthermore, the study presents an algorithm called single-phase utility computation (SPUC) that leverages these two tree structures to mine HUIs in a single phase by incorporating novel pruning strategies. Experiments conducted on both real and synthetic datasets demonstrate the superior performance of SPUC compared with IHUP, UP-Growth, and UP-Growth+algorithms.
A useful pattern is a pattern that contributes much to learning. For a classification problem those patterns near the class boundary surfaces carry more information to the classifier. For a regression problem the ones near the estimated surface carry more information. In both cases, the usefulness is defined only for those patterns either without error or with negligible error. Using only the useful patterns gives several benefits. First, computational complexity in memory and time for learning is decreased. Second, overfitting is avoided even when the learner is over-sized. Third, learning results in more stable learners. In this paper, we propose a pattern 'utility index' that measures the utility of an individual pattern. The utility index is based on the bias and variance of a pattern trained by a network ensemble. In classification, the pattern with a low bias and a high variance gets a high score. In regression, on the other hand, the one with a low bias and a low variance gets a high score. Based on the distribution of the utility index, the original training set is divided into a high-score group and a low-score group. Only the high-score group is then used for training. The proposed method is tested on synthetic and real-world benchmark datasets. The proposed approach gives a better or at least similar performance.
전통적인 빈발 패턴 마이닝은 데이터베이스로부터 사용자 정의 최소 임계치 이상의 빈도수를 가지는 유효 패턴들을 식별한다. 적절한 임계치 설정은 해당 도메인에 대한 사전 지식을 요구하므로 쉬운 작업이 아니다. 따라서 임계치 설정을 통한 마이닝 결과의 정밀한 제어 불가능으로 인해 도메인 지식을 기반으로 하지 않는 패턴 마이닝 방법이 필요하게 되었다. 상위 K 빈발 패턴 마이닝은 이러한 문제를 해결하기 위해 제안되었으며, 임계치 설정 없이 상위 K개의 중요 패턴들을 마이닝 한다. 사용자는 이를 적용함으로써 데이터베이스에 상관없이 가장 높은 빈도수의 패턴부터 K번째로 높은 빈도수의 패턴까지 찾아낼 수 있다. 비록 상위 K 빈발 패턴 마이닝이 임계치 설정 없이 상위 K개의 중요 패턴들을 마이닝 하지만, 트랜잭션 내 아이템 수량과 데이터베이스 내 서로 다른 아이템 중요도를 고려하지 못하여 많은 실세계 응용의 요구에 부합하지 못한다. 하이 유틸리티 패턴 마이닝은 아이템 중요도가 포함된 비 바이너리 데이터베이스의 특성을 고려하기 위해 제안되었으나 최소 임계치를 필요로 한다. 최근 임계치 설정 없는 하이 유틸리티 패턴 마이닝을 위한 상위 K 하이 유틸리티 패턴 마이닝이 개발되었으며, 이를 통해 사용자는 사전 지식 없이 원하는 수의 패턴을 마이닝 할 수 있다. 본 논문은 상위 K 하이 유틸리티 패턴 마이닝을 위한 알고리즘을 분석한다. 최신 알고리즘에 대한 성능분석을 통해 개선사항 및 발전 방향에 대해 고찰한다.
The major purpose of this study was to find the influencing factors in explaining information search patterns and to find if significant differences exist in search outcomes by search patterns. The data for this study were collected in a survey conducted in March of 1993. The final sample consisted of 327 respondents purchased refrigerator 340 purchased bed. The important findings of this study are as follows: First The variables related to search cost-benefit play an important role in identifying search patterns of consumers. Second search outcomes were different among four information search patterns for each of information sources. The overall search outcomes the level of purchase knowledge and of post-purchase satisfaction was relatively high for high-search and high-reliance group compared with other groups. And the results also indicate that although some consumers search less than others they still can make good purchase decision-making and can maximize their utility if they choose useful information sources selectively and use those selected information sources effectively. The findings of this study provide some implications regarding consumer education programs the consumer information providing policies and future research methods.
Journal of information and communication convergence engineering
/
제20권2호
/
pp.103-112
/
2022
The goal of pattern mining is to identify novel patterns in a database. High utility itemset mining (HUIM) is a research direction for pattern mining. This is different from frequent itemset mining (FIM), which additionally considers the quantity and profit of the commodity. Several algorithms have been used to mine high utility itemsets (HUIs). The original BPSO algorithm lacks local search capabilities in the subsequent stage, resulting in insufficient HUIs to be mined. Compared to the transfer function used in the original PSO algorithm, the V-shaped transfer function more sufficiently reflects the probability between the velocity and position change of the particles. Considering the influence of the acceleration factor on the particle motion mode and trajectory, a nonlinear acceleration strategy was used to enhance the search ability of the particles. Experiments show that the number of mined HUIs is 73% higher than that of the original BPSO algorithm, which indicates better performance of the proposed algorithm.
In high field (> 3 T) MR imaging, the magnetic field inhomogeneity in the target object increases due to the nonuniform electro-magnetic characteristics and relatively high Larmor frequency. Especially in the body imaging, the effect causes more serious problems resulting in locally high SAR(Specific Absorption Ratio). In this paper, we propose an optimized parallel-transmission RF coil element structure and show the utility of the coil by FDTD simulations to overcome the unwanted effects. Three types of TX coil elements are tested to maximize the efficiency and their driving patterns(amplitude and phase) optimized to have adequate field homogeneity, proper SAR level, and sufficient field strength. For the proposed coil element of 25 cm ${\times}$ 8 cm loop structure with 12 channels for a 3.0 T body coil, the 73% field non-uniformity without optimization was reduced to about 26% after optimization of driving patterns. The experimental as well as simulation results show the utility of the proposed parallel driving scheme is clinically useful for (ultra) high field MRI.
Traditional wedding dresses have had a high market demand in China in recent years. Traditional wedding dresses from the Tang dynasty occupy an important position among traditional Chinese dresses, and they are also favored by young women. This study was conducted to develop the rushan and qun patterns of traditional wedding dress styles from the Tang dynasty for women in their twenties in China. For this purpose, the rushan and qun patterns of Tang and Song dynasty dresses and modern traditional dresses were collected and analyzed. Additionally, the developed patterns were validated for suitability through appearance evaluations of virtual and real fittings. The following proportions of the developed patterns were proposed: H/3.3 for rushan length, H/33 for collar width, H/1.08 for total sleeve length, H/6 for sleeve width, H/8.5 for sleeve hem width, and H/1.55 for qun length. In addition, the developed patterns received high scores in the appearance evaluations of the virtual and real fittings. Therefore, the developed rushan and qun patterns are expected to have high utility in the current traditional wedding dress industry.
유틸리티 패턴 마이닝은 데이터 항목에 대한 다른 가중치를 고려할 수 있는 장점으로 인하여 비즈니스 데이터를 분석하는 환경에서 효율적으로 이용되고 있다. 그러나 기존의 빈발 패턴(Frequent Pattern) 마이닝에서의 Apriori 규칙을 그대로 적용하기 어려운 문제점으로 인하여 패턴 마이닝의 성능이 현저하게 떨어지고 있다. 본 연구는 Prefix-tree를 이용하여 지속적으로 증가하는 비즈니스 트랜잭션 데이터베이스에 대한 유틸리티 패턴 마이닝을 효과적으로 수행하기 위한 기법을 제안한다. 제안하는 기법은 Prefix-tree의 각 항목 노드에 유틸리티 값을 저장하여 FP-Growth 알고리즘에서와 같이 트리의 상향 탐색을 통하여 높은 유틸리티 패턴을 빠르게 찾아낸다. 여러 형태의 실험을 통하여 이용할 수 있는 세가지 다른 Prefix-tree 구조들 간의 성능적 특징과 패턴 탐색의 방법들을 비교하였으며 실험 결과에 따라 제안하는 기법이 기존의 기법들에 비해 많은 성능 향상을 가져올 수 있는 것을 입증하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.