• 제목/요약/키워드: High tensile reinforcement

검색결과 238건 처리시간 0.027초

Flexural strengthening of RC Beams with low-strength concrete using GFRP and CFRP

  • Saribiyik, Ali;Caglar, Naci
    • Structural Engineering and Mechanics
    • /
    • 제58권5호
    • /
    • pp.825-845
    • /
    • 2016
  • The Turkish Earthquake Code was revised in 1998 and 2007. Before these Codes, especially 1998, reinforced concrete (RC) beams with low flexural and shear strength were widely used in the building. In this study, the RC specimens have been produced by taking into consideration the RC beams with insufficient shear and tensile reinforcement having been manufactured with the use of concrete with low strength. The performance of the RC specimens strengthened with different wrapping methods by using of Carbon Fibre Reinforced Polymer (CFRP) and Glass Fibre Reinforced Polymer (GFRP) composites have been examined in terms of flexural strength, ductility and energy absorption capacity. In the strengthening of the RC elements, the use of GFRP composites instead of CFRP composites has also been examined. For this purpose, the experimental results of the RC specimens strengthened by wrapping with CFRP and GFRP are presented and discussed. It has been concluded that although the flexural and shear strengths of the RC beams strengthened with GFRP composites are lower than those of beams reinforced with CFRP, their ductility and energy absorption capacities are very high. Moreover, the RC beams strengthened with CFRP fracture are more brittle when compared to GFRP.

Earthquake resistance of structural walls confined by conventional tie hoops and steel fiber reinforced concrete

  • Eom, Taesung;Kang, Sumin;Kim, Okkyue
    • Earthquakes and Structures
    • /
    • 제7권5호
    • /
    • pp.843-859
    • /
    • 2014
  • In the present study, the seismic performance of structural walls with boundary elements confined by conventional tie hoops and steel fiber concrete (SFC) was investigated. Cyclic lateral loading tests on four wall specimens under constant axial load were performed. The primary test parameters considered were the spacing of boundary element transverse reinforcement and the use of steel fiber concrete. Test results showed that the wall specimen with boundary elements complying with ACI 318-11 21.9.6 failed at a high drift ratio of 4.5% due to concrete crushing and re-bar buckling. For the specimens where SFC was selectively used in the plastic hinge region, the spalling and crushing of concrete were substantially alleviated. However, sliding shear failure occurred at the interface of SFC and plain concrete at a moderate drift ratio of 3.0% as tensile plastic strains of longitudinal bars were accumulated during cyclic loading. The behaviors of wall specimens were examined through nonlinear section analysis adopting the stress-strain relationships of confined concrete and SFC.

Fabrication and Characterization of BCP Nano Particle Loaded PCL Fiber and Their Biocompatibility

  • Nguyen, Thi-Phuong;Lee, Byong-Taek
    • 한국재료학회지
    • /
    • 제20권7호
    • /
    • pp.392-400
    • /
    • 2010
  • The electrospinning process was established as a promising method to fabricate nano and micro-textured scaffolds for tissue engineering applications. A BCP-loaded PCL micro-textured scaffold thus can be a viable option. The biocompatibility as well as the mechanical properties of such scaffold materials should be optimized for this purpose. In this study, a composite scaffold of poly ($\varepsilon$-caprolactone) (PCL)-biphase calcium phosphate (BCP) was successfully fabricated by electrospinning. EDS and XRD data show successful loading of BCP nano particles in the PCL fibers. Morphological characterization of fibers shows that with a higher loaded BCP content the fiber surface was rougher and the diameter was approximately 1 to 7 ${\mu}m$. Tensile modulus and ultimate tensile stress reached their highest values in the PCL- 10 wt% BCP composite. When content of nano ceramic particles was low, they were dispersed in the fibers as reinforcements for the polymer matrix. However, at a high content of ceramic particles, the particles tend to agglomerate and lead to decreasing tensile modulus and ultimate stress of the PCL-BCP composite mats. Therefore, the use of nano BCP content for distribution in fiber polymer using BCP for reinforcement is limited. Tensile strain decreased with increasing content of BCP loading. From in vitro study using MG-63 osteoblast cells and L-929 fibroblast like cells, it was confirmed that electrospun PCL-BCP composite mats were biocompatible and that spreading behavior was good. As BCP content increased, the area of cell spreading on the surface of the mats also increased. Cells showed the best adherence on the surface of composite mats at 50 wt% BCP for both L-929 fibroblast-like cells and MG-63 osteoblast cell. PCL- BCP composites are a promising material for application in bone scaffolds.

노치 유무와 섬유혼입률에 따른 UHPCC의 휨인장강도 비교 (Comparison of Flexural Tensile Strength according to the Presence of Notch and Fiber Content in Ultra High Performance Cementitious Composites)

  • 강수태
    • 콘크리트학회논문집
    • /
    • 제24권5호
    • /
    • pp.525-533
    • /
    • 2012
  • 이 연구에서는 UHPCC에서 섬유혼입률에 따른 초기균열강도 및 휨인장강도의 변화를 0~5 vol.% 범위에서 조사하였으며, 노치의 여부에 따른 영향을 파악하기 위해 노치가 없는 보에 대한 4점 재하실험 및 노치 낸 보에 대한 3점 재하실험을 같이 실시하였다. 실험 결과로부터 섬유혼입률이 증가함에 따라 휨인장강도는 선형적으로 강도가 향상됨을 확인할 수 있었고, 초기균열강도의 경우에는 1 vol.% 이상에서는 강도향상을 나타내었으나 그 이하의 섬유혼입에서는 강도향상 효과가 거의 없는 것으로 나타났다. 노치 유무에 따른 휨 실험으로부터 구한 UHPCC의 초기균열발생강도 및 휨 인장강도를 비교했을 때, 섬유혼입률에 따라 노치의 영향이 변하는 것으로 나타났다. 섬유혼입률이 증가함에 따라 노치에서의 응력집중의 영향이 감소하여 강도 차이가 점차 줄어들었으며, 높은 섬유혼입률에서는 노치에 의한 응력집중효과는 없어지고 균열면의 상태 및 크기효과의 영향이 지배적으로 작용하여 노치낸 보의 강도가 좀 더 크게 나타났다.

체적비가 $SiC_{p}$/AL 복합재료의 기계적 및 피로균열진전 특성에 미치는 영향 (Effect of Volume Fraction on Mechanical and Fatigue Crack Growth Properties of SiC Particle Reinforced AL Alloy Composites)

  • 권재도;안정주;문윤배
    • 대한기계학회논문집A
    • /
    • 제20권4호
    • /
    • pp.1301-1308
    • /
    • 1996
  • In order to save the energy and protect the environment, it were studied about ecomaterials with the developed countries as central figure. In the Metal Matrix Composites(MMCs), this trends appeared the development of the MMCs which had excellent mechanical properties in spite of the low volume fraction of reinforcement. Therefore, in this study, fatigue crack growth test, tensile and hardness test were conducted in order to investigate the mechanical and fatigue properties of 5 %, and 10 % $SiC_{p}$/Al composites. As the results, in the tensile and hardness test, tensile strength and hardness increased but fatigue crack growth rate decreased with $SiC_{p}$/Al volume fraction. And in the view of fatigue failured surface through the SEM, fatigue crack initiated around the SiC particle and in low $\Delta{K}$ regions, fatigue creck detoured the SiC particle but crack propagated through the SiC particle in the high $\DeltaK$ regions.

RESEARCH TRENDS IN THE CELLULOSE REINFORCED FIBROUS CONCRETE IN USA

  • Soroushian, Parviz;Ravanbakhsh, Sizvosh
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1997년도 가을 학술발표회 논문집
    • /
    • pp.3-23
    • /
    • 1997
  • The growth in fast-track construction and repair has prompted major efforts to develop high-early-strength concrete mix compositions. Such mixtures rely on the use of relatively high cement contents and accelerator dosages to increase the rate of strength development. The measures, however, seem to compromise the long-term performance of concrete in applications such as full-depth patches as evidenced by occasional premature deterioration of such patches. The hypothesis successfully validated in this research was that traditional methods of increasing the early-age strength of concrete, involving the use of high cement and accelerator contents, increase the moisture and thermal movements of concrete. Restraint of such movements in actual field conditions, by external or internal restraining factors, generates tensile stresses which introduced microcracks and thus increase the permeability of concrete. This increase in permeability accelerates various processes of concrete deterioration, including freeze-thaw attack. Fiver reinforcement of concrete is an effective approach to the control of microcrack and crack development under tensile stresses. Fibers, however, have not been known of accelerating the process of strength gain in concrete. The recently developed specialty cellulose fibers, however, were found in this research to be highly effective in increasing the early-age strength of concrete. This provides a unique opportunity to increase the rate of strength gain in concrete without increasing moisture an thermal movements, which actually controlling the processes of microcracking and racking in concrete. Laboratory test results confirmed the desirable resistance of specialty cellulose fiber reinforced High-early-strength concrete to restrained shrinkage microcracking an cracking, and to different processes of deterioration under weathering effects.

  • PDF

조기교통개방 콘크리트의 강도특성 (Mechanical Properties of High-Early-Strength Concrete for Early Traffic Opening)

  • 원종필;김현호;안태송
    • 한국도로학회논문집
    • /
    • 제3권2호
    • /
    • pp.123-130
    • /
    • 2001
  • 본 연구는 초속경시멘트를 사용한 조기교통개방 콘크리트의 역학적 특성을 향상시키기 위하여 수행되었다. 실제로 포장콘크리트의 현장조건하에서는 외부적 또는 내부적인 요소에 의해 콘크리트의 수분과 열에 의한 수축을 구속함으로써 인장응력이 발생되며 이러한 인장응력은 균열을 발생시켜 콘크리트의 역학적 성능을 감소시킨다. 이러한 인장응력에 의한 균열을 제어하는 데 있어서 초속경시멘트 콘크리트내에 섬유를 사용하면 효과적이다. 국내에서 많이 사용되고 있는 3종류의 초속경시멘트를 사용하였고, 2종류의 섬유를 혼입하여 섬유보강 콘크리트와 일반콘크리트를 비교하였다. 시험결과 초속경시멘트를 사용한 섬유보강 콘크리트가 일반 콘크리트보다 우수한 역학적 특성을 나타냈다.

  • PDF

New constitutive models for non linear analysis of high strength fibrous reinforced concrete slabs

  • Yaseen, Ahmed Asaad;Abdul-Razzak, Ayad A.
    • Structural Engineering and Mechanics
    • /
    • 제82권1호
    • /
    • pp.121-131
    • /
    • 2022
  • The main goal of this study is to prepare a program for analyzing High Strength Steel Fibrous Reinforced Concrete (HSSFRC) slabs and predict the response and strength of the slab instead of preparing a prototype and testing it in the laboratory. For this purpose, new equations are proposed to represent the material properties of High Strength Steel Fibrous Reinforced Concrete. The proposed equations obtained from performing regression analysis on many experimental results using statistical programs. The finite element method is adopted for non-linear analysis of the slabs. The eight-node "Serendipity element" (3 DoF) is chosen to represent the concrete. The layered approach is adopted for concrete elements and the steel reinforcement is represented by a smeared layer. The compression properties of the concrete are modeled by a work hardening plasticity approach and the yield condition is determined depending on the first two stress invariants. A tensile strength criterion is adopted in order to estimate the cracks propagation. many experimental results for testing slabs are compared with the numerical results of the present study and a good agreement is achieved regarding load-deflection curves and crack pattern. The response of the load deflection curve is slightly stiff at the beginning because the creep effect is not considered in this study and for assuming perfect bond between the steel reinforcement and the concrete, however, a great agreement is achieved between the ultimate load from the present study and experimental results. For the models of the tension stiffening and cracked shear modulus, the value of Bg and Bt (Where Bg and Bt are the curvature factor for the cracked shear modulus and tension stiffening models respectively) equal to 0.005 give good results compared with experimental result.

고주파유도가열에 의한 고강도 센터필라 개발 (Development of High Strength Center-pillar by High Frequency Induction Heating)

  • 손진혁;염영진;김원혁;황정복;김선웅;유승조;이현우
    • 대한기계학회논문집A
    • /
    • 제32권6호
    • /
    • pp.533-539
    • /
    • 2008
  • An high frequency induction hardening technology of vehicle body press-formed of thin sheet steel has been developed to increase the strength of vehicle body parts locally by high frequency induction heating, thereby eliminating the need for reinforcements. And this technique for increasing the tensile strength of sheet steel was practically applied to the front floor cross member and center pillar reinforcement of a passenger car. The side impact behavior has been investigated when induction hardening technology is applied to the conventional low-carbon steel and weight reduction of an automotive body is expected. In this paper, basic experiments were performed for the hat-shaped specimen under high frequency induction heating process. Martensitic transformation was found in the heating zone through microscopic observation which showed higher hardness. In addition, the hardness and strength of the center-pillar specimen made of boron steel increased remarkably by high frequency induction heating.

열응력을 받은 하이브리드 섬유보강 시멘트 복합체의 내충격성능 평가 (Evaluation of Impact Resistance of Hybrid Fiber Reinforced Cementitious Composites Subjected to Thermal Stress)

  • 한승현;김규용;이예찬;유하민;박준영;남정수
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2023년도 봄 학술논문 발표대회
    • /
    • pp.145-146
    • /
    • 2023
  • In this study, the effect of hybrid fiber reinforcement on the residual strength and impact resistance of high-strength cementitious composites exposed to high temperatures was investigated. A cementitious composites was manufactured in which 0.15 vol% of polypropylene fiber (PP) and 1.0 vol% of smooth steel fiber (SSF) were double-mixed, and a residual strength test was conducted while thermal stress was applied by heating test, and then a high-velocity impact test was performed. In the case of general cementitious composites, the rear surface is damaged due to explosion and low tensile strength during high temperature or impact, while hybrid fiber reinforced cementitious composites can repeatedly absorb and distribute stress until multiple fibers are damaged to suppress the propagation of impact and resistance to explosion. Therefore, this study analyzed the residual strength of cementitious composites exposed to high temperatures depending on whether hybrid fibers were mixed or not, and collected research data on fracture behavior through high-speed impact tests to evaluate impact resistance and mechanical properties.

  • PDF