• Title/Summary/Keyword: High temperature plasma

Search Result 1,042, Processing Time 0.036 seconds

Time variation characteristic of pulse-modulated high frequency plasma (펄스 모듈레이션된 고주파 플라즈마의 시변 특성)

  • Lee, S.H.;Lee, D.S.;Jo, Y.S.;Kim, D.H.;Lee, H.J.;Park, C.H.
    • Proceedings of the KIEE Conference
    • /
    • 2004.07c
    • /
    • pp.1817-1819
    • /
    • 2004
  • From the plasma application point of view, electron temperature and density are one of the most important parameters for plasma process. But it is only available to control plasma by adjusting external factors like gas pressure and input power. In this paper, pulse-modulated plasma is generated by modulating 13.56GHz RF power with 1, 5, 10kHz pulse. And Langmuir probe technique is used to study the distribution of electron temperature and density. When modulated pulse is off, electron temperature decreases gradually in form of exponential decay. The value t of exponential decay slope is 33.619, 13.834, 10.803 in 1kHz. 5kHz. 10kHz. This implies that this method can be used to control electron temperature and density.

  • PDF

Carbon Nanotube Deposition using Helicon Plasma CVD at Low Temperature

  • Muroyama, Masakazu;Kazuto, Kimura;Yagi, Takao;Inoue, Kouji;Saito, Ichiro
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2003.07a
    • /
    • pp.201-202
    • /
    • 2003
  • We developed a novel growth method of aligned carbon nanotubes. Aligned carbon nanotubes are grown on a metal catalyst on a glass substrate using biased Helicon plasma chemical vapor deposition (HPECVD) of $CH_4/H_2$ gases from 400 C to 500 C. The Helicon plasma source is one of the high-density plasma sources and is promising for low temperature carbon deposition. A Ni film was used as a catalyst to reduce the activation energy of the nanotubes' growth. The carbon nanotubes were deposited on the nickel catalysis layer selectively.

  • PDF

Development of Steam Plasma-Enhanced Coal Gasifier and Future Plan for Poly-Generation

  • Hong, Yong-Cheol;Lho, Taihyeop;Lee, Bong-Ju;Uhm, Han-Sup
    • Journal of the Korean institute of surface engineering
    • /
    • v.42 no.3
    • /
    • pp.139-144
    • /
    • 2009
  • A microwave plasma torch at the atmospheric pressure by making use of magnetrons operated at the 2.45 GHz and used in a home microwave oven has been developed. This electrodeless torch can be used to various areas, including industrial, environmental and military applications. Although the microwave plasma torch has many applications, we in the present work focused on the microwave plasma torch operated in pure steam and several applications, which may be used in future and right now. For example, a high-temperature steam microwave plasma torch may have a potential application of the hydrocarbon fuel reforming at one atmospheric pressure. Moreover, the radicals including hydrogen, oxygen and hydroxide molecules are abundantly available in the steam torch, dramatically enhancing the reaction speed. Also, the microwave plasma torch can be used as a high-temperature, large-volume plasma burner by injecting hydrocarbon fuels in gas, liquid, and solid into the plasma flame. Finally, we briefly report treatment of soils contaminated with oils, volatile organic compounds, heavy metals, etc., which is an underway research in our group.

Structural Evolution and Electrical Properties of Highly Active Plasma Process on 4H-SiC

  • Kim, Dae-Kyoung;Cho, Mann-Ho
    • Applied Science and Convergence Technology
    • /
    • v.26 no.5
    • /
    • pp.133-138
    • /
    • 2017
  • We investigated the interface defect engineering and reaction mechanism of reduced transition layer and nitride layer in the active plasma process on 4H-SiC by the plasma reaction with the rapid processing time at the room temperature. Through the combination of experiment and theoretical studies, we clearly observed that advanced active plasma process on 4H-SiC of oxidation and nitridation have improved electrical properties by the stable bond structure and decrease of the interfacial defects. In the plasma oxidation system, we showed that plasma oxide on SiC has enhanced electrical characteristics than the thermally oxidation and suppressed generation of the interface trap density. The decrease of the defect states in transition layer and stress induced leakage current (SILC) clearly showed that plasma process enhances quality of $SiO_2$ by the reduction of transition layer due to the controlled interstitial C atoms. And in another processes, the Plasma Nitridation (PN) system, we investigated the modification in bond structure in the nitride SiC surface by the rapid PN process. We observed that converted N reacted through spontaneous incorporation the SiC sub-surface, resulting in N atoms converted to C-site by the low bond energy. In particular, electrical properties exhibited that the generated trap states was suppressed with the nitrided layer. The results of active plasma oxidation and nitridation system suggest plasma processes on SiC of rapid and low temperature process, compare with the traditional gas annealing process with high temperature and long process time.

Thermal analysis and optimization of the new ICRH antenna Faraday Screen in EAST

  • Q.C. Liang ;L.N. Liu ;W. Zhang ;X.J. Zhang ;S. Yuan ;Y.Z. Mao ;C.M. Qin;Y.S. Wang ;H. Yang
    • Nuclear Engineering and Technology
    • /
    • v.55 no.7
    • /
    • pp.2621-2627
    • /
    • 2023
  • In Experimental Advanced Superconducting Tokamak (EAST) experiments, to achieve long pulse and high-power ICRH system operation, a new kind of ICRH antenna has been designed. One of the most critical factors in limiting the operation of long pulse and high power is the intense heat load in the front face of the ICRH antenna, especially the Faraday Screen (FS). Therefore, the cooling channels of FS need to be designed. According to thermal-hydraulic analysis, the FS tubes are divided into several groups to achieve more excellent water cooling capability. The number of series and parallel tubes in one group is chosen as six. This antenna went into service in the spring of 2021, and it is delightful that the temperature distribution of the FS tube is below 400 ℃ in 14.5 s and 1.8 MW ICRH system operation. However, the active water-cooling design was not carried out on the upper and lower plates of FS, which led to severe ablations on that region under long pulse and high power operation, and the temperature is up to 800. Therefore, the upper and lower side plates of the FS were designed with water cooling based on thermal-hydraulic analysis. During the 2022 winter experiments, the temperature of ICRH antenna FS was lower than 400 in the pulse of 200s and the power of 1 MW operation.

Characteristics of High Temperature Fatigue for welding material by Plasma Transferred Arc Weld (플라즈마 분말 용접재의 고온피로특성)

  • Choi, Seong-Dae;Cheong, Seon-Hwan;Kweon, Hyun-Kyu;Kim, Gi-Man;Kim, Jam-Kyu
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.6 no.3
    • /
    • pp.92-97
    • /
    • 2007
  • The overlay welding the automobile where the durability is demanded, it is used in the vessel engine valve, plant valve and pump parts. Cause of damage public opinion one what is thought is the fatigue load due to the opening and shutting operation right time repetition of the engine valve. The damage cause of the engine valve or explanation of destruction mechanism is very difficult. The research which it sees to make clear a overlay welding of Co-alloy by Plasma Transferred Arc Weld Surfacing Process reconsideration fatigue crack initiation and fatigue crack growth mechanism at high temperature.

  • PDF

Low Temperature Plasma Nitriding Process of AISI 304L Austenitic Stainless Steels for Improving Surface Hardness and Corrosion Resistance (내식성 및 표면경도 향상을 위한 AISI 304L 스테인리스강의 저온 플라즈마질화 프로세스)

  • Lee, In-Sup
    • Korean Journal of Metals and Materials
    • /
    • v.47 no.10
    • /
    • pp.629-634
    • /
    • 2009
  • The effects of processing parameters on the surface properties of the hardened layers processed by the low temperature plasma nitrocarburizing and the low temperature two-step plama treatment (carburizing+nitriding) were investigated. The nitrogen-enriched expanded austenite structure (${\gamma}_N$) or S phase was formed on all of the treated surface. The surface hardness reached up to 1200 $HV_{0.025}$, which is about 5 times higher than that of untreated sample (250 $HV_{0.1}$). The thickness of hardened layer of the low temperature plasma nitrocarburized layer treated at $400^{\circ}C$ for 40 hour was only $15{\mu}m$, while the layer thicknesss in the two-step plama treatment for the 30 hour treatment increased up to about $30{\mu}m$. The surface thickness and hardness increased with increasing treatment temperature and time. In addition, the corrosion resistance was enhanced than untreated samples due to a high concentration of N on the surface. However, higher treatment temperature and longer treatment time resulted in the formation of $Cr_2N$ precipitates, which causes the degradation of corrosion resistance.

High-rate, Low-temperature Deposition of Multifunctional Nano-crystalline Silicon Nitride Films

  • Hwang, Jae-Dam;Lee, Kyoung-Min;Keum, Ki-Su;Lee, Youn-Jin;Hong, Wan-Shick
    • Journal of Information Display
    • /
    • v.11 no.3
    • /
    • pp.109-112
    • /
    • 2010
  • The solid phase compositions and dielectric properties of silicon nitride ($SiN_x$) films prepared using the plasma enhanced chemical vapor deposition (PECVD) technique at a low temperature ($200^{\circ}C$) were studied. Controlling the source gas mixing ratio, R = $[N_2]/[SiH_4]$, and the plasma power successfully produced both silicon-rich and nitrogen-rich compositions in the final films. The composition parameter, X, varied from 0.83 to 1.62. Depending on the film composition, the dielectric properties of the $SiN_x$ films also varied substantially. Silicon-rich silicon nitride (SRSN) films were obtained at a low plasma power and a low R. The photoluminescence (PL) spectra of these films revealed the existence of nano-sized silicon particles even in the absence of a post-annealing process. Nitrogen-rich silicon nitride (NRSN) films were obtained at a high plasma power and a high R. These films showed a fairly high dielectric constant ($\kappa$ = 7.1) and a suppressed hysteresis window in their capacitance-voltage (C-V) characteristics.

Surface hardening and enhancement of Corrosion Resistance of AISI 310S Austenitic Stainless Steel by Low Temperature Plasma Nitrocarburizing treatment.

  • Lee, Insup
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2012.11a
    • /
    • pp.175-177
    • /
    • 2012
  • A corrosion resistance and hard nitrocarburized layer was distinctly formed on 310 austenitic stainless steel substrate by DC plasma nitrocarburizing. Basically, 310L austenitic stainless steel has high chromium and nickel content which is applicable for high temperature applications. In this experiment, plasma nitrocarburizing was performed in a D.C. pulsed plasma ion nitriding system at different temperatures in $H_2-N_2-CH_4$ gas mixtures. After the experiment structural phases, micro-hardness and corrosion resistance were investigated by the optical microscopy, X-ray diffraction, scanning electron microscopy, micro-hardness testing and Potentiodynamic polarization tests. The hardness of the samples was measured by using a Vickers micro hardness tester with the load of 100 g. XRD indicated a single expanded austenite phase was formed at all treatment temperatures. Such a nitrogen and carbon supersaturated layer is precipitation free and possesses a high hardness and good corrosion resistance.

  • PDF

Via Contact and Deep Contact Hole Etch Process Using MICP Etching System (Multi-pole Inductively Coupled Plasma(MICP)를 이용한 Via Contact 및 Deep Contact Etch 특성 연구)

  • 설여송;김종천
    • Journal of the Semiconductor & Display Technology
    • /
    • v.2 no.3
    • /
    • pp.7-11
    • /
    • 2003
  • In this research, the etching characteristics of via contact and deep contact hole have been studied using multi-pole inductively coupled plasma(MICP) etching system. We investigated Plasma density of MICP source using the Langmuir probe and etching characteristics with RF frequency, wall temperature, chamber gap, and gas chemistry containing Carbon and Fluorine. As the etching time increases, formation of the polymer increases. To improve the polymer formation, we controlled the temperature of the reacting chamber, and we found that temperature of the chamber was very effective to decrease the polymer thickness. The deep contact etch profile and high selectivity(oxide to photoresist) have been achieved with the optimum mixed gas ratio containing C and F and the temperature control of the etching chamber.

  • PDF