• Title/Summary/Keyword: High temperature period

Search Result 1,854, Processing Time 0.032 seconds

Transcript Analysis of Wheat WAS-2 Gene Family under High Temperature Stress during Ripening Period

  • Ko, Chan Seop;Kim, Jin-Baek;Hong, Min Jeong;Kim, Kyeong Hoon;Seo, Yong Weon
    • Plant Breeding and Biotechnology
    • /
    • v.6 no.4
    • /
    • pp.363-380
    • /
    • 2018
  • Wheat is frequently exposed to high temperature during anthesis and ripening period, which resulted in yield loss and detrimental end-use-quality. The transcriptome analysis of wheat under high temperature stress during the early stage of the grain filling period was undertaken. Three expression patterns of differentially expressed genes (DEGs) during grain filling period were identified. The DEGs of seed storage protein and starch-branching enzyme showed continuous increases in their expressions during high temperature stress, as well as during the recovery period. The activities of the enzymes responsible for the elimination of antioxidants were significantly affected by exposure to high temperature stress. Only the WAS-2 family genes showed increased transcription levels under high temperature stress in dehulled spikelets. The relative transcription levels for sub-genome specific WAS-2 genes suggested that WAS-2 genes reacted with over-expression under high temperature stress and decreased back to normal expression during recovery. We propose the role of WAS-2 as a protective mechanism during the stage of grain development under high temperature in spikelets.

Combustion Characteristics of A Regenerative Combustor with the Change of Alternating Period (절환주기 변화에 다른 축열 연소기의 연소특성)

  • Yang, B.O.;Lim, I.G.
    • Journal of the Korean Society of Combustion
    • /
    • v.4 no.1
    • /
    • pp.95-103
    • /
    • 1999
  • Experimental study on combustion characteristics of a regenerative combustor has performed. High-temperature air combustion in the regenerative combustor is obtained through heat recovery from exhaust gas flow by porous ceramic materials and through alternation of air flow direction through the combustor. Temperature field, CO and NOx emission with respect to the frequency of alternation are measured. It is found that at initial stage of the alternation, temperature of inlet section of main combustion chamber is increased sharply since both high temperature air preheated by the ceramics and prompt fuel injection results in rapid combustion. Following this initial stage, combustion temperature is reduced as the preheated air temperature is reduced. However peak temperature in the chamber and exhaust gas temperature are decreased as the alternation period is reduced, increased temperature of ceramic is observed. CO and NOx emission with respect to the alternation period is also examined. It is found that there exists a range of optimum alternating period for CO and NOx emission characteristics.

  • PDF

Mammary Cell Turnover under High Temperature during the Dry Period in Dairy Cows

  • Peng, Xiaoqing;Lu, Lin;Li, Yan;Yan, Peishi
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.24 no.4
    • /
    • pp.485-492
    • /
    • 2011
  • The influence of high temperature on mammary cell turnover during the dry period is still unclear. The objective of this study was to investigate mammary cell turnover and p53 protein expression in the mammary tissue under high temperature conditions. Mammary gland biopsy samples from 8 dairy cows were obtained at 7, 25, 40, and 53 d during the dry period in summer or spring (n = 4, each season). Cell cycle, cell turnover, and p53 protein expression were analyzed by flow cytometry. During the dry period in summer, the percentage of mammary epithelial cells in the G0/G1 phase was the highest, but those in the S and G2/M phases were lower. However, the proportion of cells in the different stages of the cell cycle was not significantly different among the different biopsy time points, except in the G2/M phase. Under different temperature conditions, the cells were significantly different in their apoptotic rate and proliferation index; moreover, the tendencies of these indicators to change significantly differed. In general, the samples under high temperature conditions showed significantly lower apoptotic rates and proliferation indices. Under high temperature conditions, the apoptotic rate and proliferation index were the lowest (2.17% and 3.26%, respectively) at day 40, and the highest at day 53 (3.67% and 4.61%, respectively). However, under normal temperature conditions, the values of these indicators were the lowest (7.60% and 5.54%, respectively) at day 7, and almost the highest at day 25 (12.85% and 6.47%, respectively). Moreover, p53 protein expression was significantly higher under high temperature conditions than under normal temperature conditions, except at day 25. The level of p53 protein was the lowest (13.10%) under high temperature conditions at day 25, but was the highest (26.07%) under normal temperature conditions. Our findings suggest that high temperature delayed the G2/M phase of the cell cycle and the cell turnover rate, but remarkably increased p53 protein expression. Thus, the results indicate that high temperature extends the recovery period of mammary epithelial cells.

Effects of Photoperiod and Temperature on Flowering Responses of Ornamental Nicotiana species (일장 및 온도처리가 관상용 Nicotiana species의 개화에 미치는 영향)

  • Koo, Han-Seo;Kim, Chung-Whan;Lee, Young-Deuk
    • Journal of the Korean Society of Tobacco Science
    • /
    • v.11 no.2
    • /
    • pp.127-134
    • /
    • 1989
  • Several growth characteristics of two ornamental tobacco species, Nicotiana sanderae and N. affinis, were investigated in this study. Also effect of temperature and daylength on the flowering of the tobacco plants were evaluated to obtain basic information on breeding and cultivation. 1. The plants were great in high temperature-long day at the early stage and in low temperature-short day at the late stage of plant growth, for both Nicotana species. At the early growth stage the leaf length N. sanderae was great in high temperature-long day, and that of N. affinis was great in high temperature-short day period, while at the late stage of the plant growth the leaf lengths were more significantly effected by the temperature rather than daylength. Leaf width and leaf shape index were less sensitive to the conditions. 2. For both of the species, the total number of tobacco leaves not much influenced by the temperature and daylength. 3. There were no significant differences for budding and flowering period between the two species, both of which were sensitive to temperature and daylength with more influence by daylength than temperature. 4. Number of floral stalks, number of flower and flowering period were not much influenced by temperature and daylength; however, N. affinis had 2 more floral stalks, 31 more flowers, and 6 day longer flowering period than N. sanderae.

  • PDF

Effect of Fermentation Temperature on Free Sugar, Organic Acid and Volatile Compounds of Kakdugi (깍두기의 발효숙성온도가 유리당, 유기산 및 향기성분에 미치는 영향)

  • 장명숙;김성단;허우덕
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.27 no.1
    • /
    • pp.16-23
    • /
    • 1998
  • Effect of Fermentation temperature on the changes of chemical components in Kakudgi during fermentation was investigated by measuring free sugar, organic acid and volatile compounds up to 57 days at several temperatures. The mannitol was increased in palatable period in contrast with those of other free sugars. The higher the initial fermentation temperature was and the longer the initial fermentation time at 2$0^{\circ}C$ was, the faster the second increasing period was and the less the initial contents was. Lactic acid was increased 6~31 times from a little amount at the initial period. The higher the initial fermentation temperature was and the more the increasing content was. But malic acid which was abundant(55.1% of total nonvolatile organic acid) in the initial fermentation period was remarkably decreased in the palatable period. The change of the sulfides among the volatile compounds was remarkable. Methyl allyl sulfide which was a little in the initial fermentation period was remarkably increased in the final fermentation period, and the correlation coefficients between the content of methyl allyl sulfide and aroma in sensory evaluation were high. It could be suggested that the fermentation temperature should be set to 4$^{\circ}C$ after fermentating at 2$0^{\circ}C$ for 36 hours in the view point of keeping the Kakdugi taste and quality well because of high content of free sugar and nonvolatile organic acids.

  • PDF

Effect of Temperature, Relative Humidity, and Free Water Period on Lesion Development and Acervulus Formation of Colletotrichum gloeosporioides on Red Pepper (고추 탄저병 Colletotrichum gloeosporioides의 병반 및 분생자층 형성에 미치는 온도, 상대습도 및 수분 지속기간의 영향)

  • 박경석;김충회
    • Korean Journal Plant Pathology
    • /
    • v.10 no.1
    • /
    • pp.34-38
    • /
    • 1994
  • Effect of temperature, relative humidity (RH) and free water period on anthracnose development by Colletotrichum gloeosporioides was examined on red pepper fruits. Mycelial growth of C. gloeosporioides was best at 28$^{\circ}C$, but greatly retarded at 32$^{\circ}C$. Minimum inoculum density required for lesion development varied with isolates, but was mostly above 1.0$\times$105 conidia/ml. Optimum temperature for lesion development on fruits was 31$^{\circ}C$. Percentage of lesion development was decreased as incubation temperature decreased. similar trend of temperature response was observed for acervulus formation on the developed lesions. Acervuli were not developed on the lesion as low as at 19$^{\circ}C$. Lesion development and acervuli formation tended to increase as increasing RH, but were greatly inhibited at the RH lower than 88%. More than 2 hours of free water period after inoculation were required for lesion development. Lesion development was increased as free water period increased. This study indicates that anthracnose development by C. gloeosporioides favors the conditions of high temperature above 28$^{\circ}C$, high humidity above 90% RH, and requires free water period longer than 2 hours.

  • PDF

Pacific Equatorial Sea Surface Temperature Variation During the 2015 El Niño Period Observed by Advanced Very-High-Resolution Radiometer of NOAA Satellites

  • Lee, Seongsuk;Yi, Yu
    • Journal of Astronomy and Space Sciences
    • /
    • v.35 no.2
    • /
    • pp.105-109
    • /
    • 2018
  • El $Ni{\tilde{n}}o$ is the largest fluctuation in the climate system, and it can lead to effects influencing humans all over the world. An El $Ni{\tilde{n}}o$ occurs when sea surface temperatures in the central and eastern tropical Pacific Ocean become substantially higher than average. We investigated the change in sea surface temperature in the Pacific Ocean during the El $Ni{\tilde{n}}o$ period of 2015 and 2016 using the advanced very-high-resolution radiometer (AVHRR) of NOAA Satellites. We calculated anomalies of the Pacific equatorial sea surface temperature for the normal period of 1981-2010 to identify the variation of the 2015 El $Ni{\tilde{n}}o$ and warm water area. Generally, the warm water in the western tropical Pacific Ocean shifts eastward along the equator toward the coast of South America during an El $Ni{\tilde{n}}o$ period. However, we identified an additional warm water region in the $Ni{\tilde{n}}o$ 1+2 and Peru coastal area. This indicates that there are other factors that increase the sea surface temperature. In the future, we will study the heat coming from the bottom of the sea to understand the origin of the heat transport of the Pacific Ocean.

High-Temperature Drying of Bamboo Tubes Pretreated with Polyethylen Glycol Solution

  • Kang, Chun-Won;Chung, Woo-Yang;Han, Jae-Ok;Kang, Ho-Yang
    • Journal of the Korean Wood Science and Technology
    • /
    • v.45 no.2
    • /
    • pp.139-146
    • /
    • 2017
  • This study was conducted to develop a new drying technology in order to quickly and massively dry bamboo tubes without crack and check. The bamboo tubes with the diameter of 45 mm - 68 mm had been impregnated in the solution of PEG-1000, and then were dried under room temperature and high temperature, respectively. The cracks occurred on all control specimens while no cracks were found on PEG treated specimens during drying at room temperature due to effect of PEG restraining the circumferential shrinkage of bamboo tube. But the drying period of this method was too long (200 days) compared to 10 hours of kiln drying. During fast high temperature drying, cracks occurred on all control specimens, but no cracks were found on PEG treated specimens, which could be accounted for more solidified PEG due to higher drying temperature and faster drying rate, and the tension set formed on the surface of bamboo tube in the early stage of drying owning to high drying temperature and low relative humidity. Thus, it is advised that PEG treated bamboo tube should be fast dried at high temperature in order to not only prevent crack or check in short drying period but also increase the dimensional stability of the products made of bamboo tubes.

Effect of High Temperature on Grain Characteristics and Quality during the Grain Filling Period

  • Chuloh Cho;Han-yong Jeong;Jinhee Park;Yurim Kim;Myoung-Goo Choi;Changhyun Choi;Chon-Sik Kang;Ki-Chang Jang;Jiyoung Shon
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2023.04a
    • /
    • pp.51-51
    • /
    • 2023
  • Global warming has significant effects on the growth and development of wheat and can cause a reduction in grain yield and quality. Grain quality is a major factor determining the end-use quality of flour and a reduction in quality can result economic losses. Therefore, it is necessary to study the physiological characteristic of wheat to understand its response to temperature elevation, which can aid in the development of strategies to mitigate the negative effects of high temperature and sustain wheat production. This study investigated the effects of elevated temperature on grain characteristics and quality during the grain filling period of two Korean bread wheat cultivars Baekkang and Jokyoung. These two bread wheat cultivars were subjected to an increasing temperature conditions regime; T0 (control), T1 (T0+1℃), T2 (T0+2℃) and T3 (T0+3℃). The results showed that high temperature, particularly in T3 condition, caused a significant decrease in the number of grains per spike and grain yield compared to the T0 condition. The physical properties, such as grain weight and hardness, as well as chemical properties, such as starch, protein, gluten content and SDSS, which affect the quality of wheat, were changed by high temperature during the grain filling period. The grain weight and hardness increased, while the grain size not affected by high temperature. On the other hand, amylose content decreased, whereas protein, gluten content and SDSS increased in T3 condition. In this study, high temperature within 3℃ of the optimal growth temperature of wheat, quantity properties decreased while quality-related prosperities increased. To better understand the how this affects the grain's morphology and quality, further molecular and physiological studies are necessary.

  • PDF

A Study on the Improvement of the Low Temperature Address Discharge Time Lag of High-Xe Content AC PDP (AC PDP의 저온에서 어드레스 방전 지연 시간 개선에 관한 연구)

  • Kim, Ji-Yong;Kim, Sun;Lee, Seok-Hyun;Lee, Jeong-Hae;Kim, Jun-Yeop
    • Proceedings of the KIEE Conference
    • /
    • 2005.07c
    • /
    • pp.2156-2159
    • /
    • 2005
  • ADS(Address Display Period Separation) driving method has been considered to be the most appropriate driving technique for AC PDP. ADS driving method is composed of reset, address, sustain and erase period. Therefore, a long time should be allocated to an address period, which results in a reduction of brightness. To realize a high luminance and high picture quality, it is necessary to high speed addressing. However, address discharge time lag increases as the temperature decreases, which can cause the misfiring and low picture quality In this paper, the electric field effect and priming particle effect are investigated in order to reduce the address discharge time lag at low temperature. Address discharge time lag was reduced effectively when the priming particles are provided.

  • PDF