• Title/Summary/Keyword: High temperature operation

Search Result 1,405, Processing Time 0.031 seconds

Thermal Model of High-Speed Spindle Units

  • Zver, Igor-Alexeevich;Eun, In-Ung;Chung, Won-Jee;Lee, Choon-Man
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.5
    • /
    • pp.668-678
    • /
    • 2003
  • For the purpose to facilitate development of high-speed spindle units (SUs) running on rolling bearings, we have developed a beam element model, algorithms, and software for computer analysis of thermal characteristics of SUs. The thermal model incorporates a model of heat generation in rolling bearings, a model of heat transfer from bearings, and models for estimation of temperature and temperature deformations of SU elements. We have carried out experimental test and made quantitative evaluation of the effect of operation conditions on friction and thermal characteristics of the SUs of grinding and turning machines of typical structures. It is found out that the operation conditions make stronger effect on SU temperatures when rpm increases. A comparison between the results of analysis and experiment proves their good mutual correspondence and allows us to recommend application of the models and software developed for design and research of high-speed SUs running on rolling bearings.

Fabrication and characteristics of the flexible DSSC

  • Choe, Eun-Chang;Choe, Won-Chang;Wi, Jin-Uk;Hong, Byeong-Yu
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.400.2-400.2
    • /
    • 2016
  • Dye-sensitized solar cells (DSSCs) have been widely investigated as a next generation solar cell because of their simple structure and low manufacturing cost. To realize a commercially competitive technology of DSSCs, it is imperative to employ a technique to prepare nanocrystlline thin film on the flexible organic substrate, aiming at increasing the flexibility and reducing the weight as well as the overall device thickness of DSSCs. The key operation of glass-to-plastic substrates conversion is to prepare mesoporous TiO2 thin film at low temperature with a high surface area for dye adsorption and a high degree of crystallinity for fast transport of electrons. However, the electron transport in the TiO2 film synthesized at low temperature is very poor. So, in this study, TiO2 films synthesized at high temperature were transferred on the selective substrate. We fabricated DSSCs at low temperature using this method. So, we confirmed that the performance of DSSCs using TiO2 films synthesized at high temperature was improved.

  • PDF

A Study on the Fire Safety of High-rise Apartments Based on Fire Door Switch and Automatic Fire Extinguishing System

  • Zhang, ZeChen;Kong, Ha-Sung
    • International Journal of Advanced Culture Technology
    • /
    • v.9 no.4
    • /
    • pp.424-430
    • /
    • 2021
  • The purpose of this study is to analyse the characteristics and spreading laws of parameters such as fire smoke, concentration of CO, visibility, and temperature at fire scene in high-rise residential buildings under the different conditions of fire doors and automatic fire extinguishing systems. Using Pyrosim to simulate diverse fire scenes in a high-rise apartment with corridors, to analyze the changes in those parameters. The results show that when a fire occurs, closing the fire-fighting corridor will increase the smoke temperature and concentration of CO in the stairwell, and reduce the height and visibility of the smoke layer; the automatic fire extinguishing system effectively suppresses the increase in the temperature of the fire smoke and the sedimentation of the smoke layer. Reasonable setting and operation of the automatic fire extinguishing system could effectively inhibit the spread of fire. Although closing fire corridor can slow down the direct upward spread of smoke through the corridor, it will force the fire smoke into the stairwell, which will seriously affect evacuation through the stairs. Therefore, in order to reduce risks, it is forbidden to close the fire doors of the firefighting corridor and stacking combustible materials in the corridor, Also, intensifying inspections and ensuring the normal operation of the automatic fire extinguishing system are indispensable. Based on the research results, the significance of installing fire-fighting facilities in the construction of high-rise apartments was discussed and proved.

Preliminary design and assessment of a heat pipe residual heat removal system for the reactor driven subcritical facility

  • Zhang, Wenwen;Sun, Kaichao;Wang, Chenglong;Zhang, Dalin;Tian, Wenxi;Qiu, Suizheng;Su, G.H.
    • Nuclear Engineering and Technology
    • /
    • v.53 no.12
    • /
    • pp.3879-3891
    • /
    • 2021
  • A heat pipe residual heat removal system is proposed to be incorporated into the reactor driven subcritical (RDS) facility, which has been proposed by MIT Nuclear Reactor Laboratory for testing and demonstrating the Fluoride-salt-cooled High-temperature Reactor (FHR). It aims to reduce the risk of the system operation after the shutdown of the facility. One of the main components of the system is an air-cooled heat pipe heat exchanger. The alkali-metal high-temperature heat pipe was designed to meet the operation temperature and residual heat removal requirement of the facility. The heat pipe model developed in the previous work was adopted to simulate the designed heat pipe and assess the heat transport capability. 3D numerical simulation of the subcritical facility active zone was performed by the commercial CFD software STAR CCM + to investigate the operation characteristics of this proposed system. The thermal resistance network of the heat pipe was built and incorporated into the CFD model. The nominal condition, partial loss of air flow accident and partial heat pipe failure accident were simulated and analyzed. The results show that the residual heat removal system can provide sufficient cooling of the subcritical facility with a remarkable safety margin. The heat pipe can work under the recommended operation temperature range and the heat flux is below all thermal limits. The facility peak temperature is also lower than the safety limits.

Thermohydrodynamic Lubrication Analysis of High Speed Journal Bearing Considering Variable Density and Specific Heat (변화하는 밀도와 비열을 고려한 고속 저어널 베어링의 열유체 윤활해석)

  • 전상명;장시열
    • Tribology and Lubricants
    • /
    • v.17 no.4
    • /
    • pp.297-306
    • /
    • 2001
  • Under the condition of variable density and specific heat, maximum pressure, maximum temperature, bearing load, friction and side leakage in high-speed journal bearing operation are examined within some degree of Journal misalignment. The results are compared with the calculation results under the conditions of constant density and specific heat, and variable density and constant specific heat. It is found that the condition of variable density and specific heat play important roles in determining friction and load of Journal bearing at high speed operation.

An Overview of Magnetohydrodynamic Ship Propulsion with Superconducting Magnets

  • Kong, Yeong-Kyung
    • Journal of Energy Engineering
    • /
    • v.2 no.2
    • /
    • pp.231-236
    • /
    • 1993
  • The feasibility of Magnetohydrodynamic(MHD) Ship Propulsion using Superconduction Magnets is reviewed in light of relent advances in high-temperature superconducting. The propulsion using a screw propeller in the noise reduction has it's own limitation. The epochal noiseless MHD propulsion method which does not have this disadvantage is studying nowadays. The subject of a marine MHD as propulsion has been examined before and was found to be interesting because of relatively low magnetic flux densities. It is demonstrated that the MHD propulsion is technically interesting with high magnetic flux density. The development of large-scale magnets using the high-temperature superconductor now under development could make it practical to construct submersibles for high-speed and silent operation.

  • PDF

Calculation of Maximum Allowabel Temperature Difference for Life Design of Valve Casings for Steam Turbines of Fossil Power Plants (화력발전용 증기터빈 밸브 케이싱의 수명 설계를 위한 최대허용온도차 계산)

  • Ha, Joon-Wook;Kim, Tae-Woan;Lee, Boo-Youn
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.8
    • /
    • pp.46-52
    • /
    • 1999
  • Large valves for steam turbines of fossil power plants are exposed to a severe mechanical and thermal loading resulting from steam with high pressure and high temperature. Valve casings are designed to withstand such a loading. During the operation of a plant, temperatures at inner and outer surface of the casings are measured and steam flow is controlled so that the measured difference is lower than the maximum allowable value determined in the design stage. In this paper, a method is presented to calculate the maximum allowable temperature difference at the inner and outer surface of valve casings for steam turbines of fossil power plants. The finite element method is used to analyze distribution of temperature and stresses of a casing under the operating condition. Low cycle fatigue and creep rupture are taken into consideration to determine the maximum allowable temperature difference. The method can be usefully applied in the design stage of the large valves for the steam turbines, contributing to safe and reliable operation of the fossil power plants.

  • PDF

An Experimental Study on Semiconductor Process Chiller for Dual Channel (듀얼채널을 적용한 반도체공정용 칠러의 실험적 연구)

  • Cha, Dong-An;Kwon, Oh-Kyung
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.22 no.11
    • /
    • pp.760-766
    • /
    • 2010
  • Excessive heat occurs during semiconductor manufacturing process. Thus, precise control of temperature is required to maintain constant chamber-temperature and also wafer-temperature in the chamber. Compared to an industrial chiller, semiconductor chiller's power consumption is very high due to its continuous operation for a year. Considering the high power consumption, it is necessary to develop an energy efficient chiller by optimizing operation control. Therefore, in this study, a semiconductor chiller is experimentally investigated to suggest energy-saving direction by conducting load change, temperature rise and fall and control precision experiments. The experimental study shows the cooling capacity of dual-channel chiller rises over 30% comparing to the conventional chiller. The time and power consumption in the temperature rising experiment are 43 minutes and 8.4 kWh, respectively. The control precision is the same as ${\pm}1^{\circ}C$ at $0^{\circ}C$ in any cases. However, it appears that the dual channel's control precision improves to ${\pm}0.5^{\circ}C$ when the setting temperature is over $30^{\circ}C$.

Numerical analysis of the venturi flowmeter in the liquid lead-bismuth eutectic circuit after long-term operation

  • Zhichao Zhang;Rafael Macian-Juan;Xiang Wang
    • Nuclear Engineering and Technology
    • /
    • v.56 no.3
    • /
    • pp.1081-1090
    • /
    • 2024
  • The liquid Lead-bismuth eutectic is used as the coolant for Gen-IV reactor concepts. However, due to its strong corrosive and high operating temperature, it is difficult to accurately measure the flow rate in long-term operating conditions. Venturi flowmeter is a simple structured flowmeter, which plays a very important role in the flow measurement of high-temperature liquid metals, especially since the existing flowmeters are difficult to be competent. It has the advantages of easy maintenance and stable operation. Therefore, it is necessary to study the operating conditions of the venturi flowmeter under high-temperature conditions. This work performs a series of simulations of the fluid-solid interaction between the flow liquid metal and venturi flowmeter with COMSOL software, including the dimensional sensitivity analysis of the venturi flowmeter to explore the most suitable structure and parameters for liquid heavy metal, the sensitivity analysis of the geometric parameters of the venturi tube on the varying conditions. It shows that when the contraction angle of the venturi flowmeter is 33°, the diffusion angle is 13°, the diameter of the throat is 8 mm, and the temperature of the lead-bismuth eutectic is 733.15 K, it is most suitable for the measurement in the lead-bismuth circuit.

Real operation of 2 kW class reverse-Brayton refrigeration system with using scroll compressor package

  • Kim, Hyobong;Yeom, Hankil;Choo, Sangyoon;Kim, Jongwoo;Park, Jiho;In, Sehwan;Hong, Yong-Ju;Park, Seong-Je;Ko, Junseok
    • Progress in Superconductivity and Cryogenics
    • /
    • v.22 no.4
    • /
    • pp.40-44
    • /
    • 2020
  • This paper describes the real operation of 2 kW class reverse-Brayton refrigeration system with neon as a working fluid. The refrigeration cycle is designed with operating pressure of 0.5 and 1.0 MPa at low and high pressure side, respectively. Compressor package consists of several helium scroll compressors witch are originally used for driving GM cryocooler. Three segments of plate heat exchanger are adopted to cover the wide temperature range and the refrigeration power is produced by turbo expander. The developed refrigeration system is successfully operated at its target temperature of 77 K. In experiments, all parameters such as pressure, temperature, mass flow rate and valve opening are measured to investigate characteristics during cool-down process and normal state. The difference between design and real operation is discussed with measured experimental data. At normal state of 77 K operation, the developed reverse-Brayton refrigeration system shows 1.83 kW at 68.2 K of cold-end temperature.