• Title/Summary/Keyword: High temperature incubation

Search Result 216, Processing Time 0.02 seconds

The Preparation of Low Methoxyl Pectin Gel and LMP Apple Jelly with Pectinesterase Isolated from Aspergillus Japonicus (Aspergillus japonicus에서 추출한 Pectinesterase를 이용한 Low Methoxyl Pectin Gel 및 LMP 사과 Jelly 제조에 관한 연구)

  • Choi, Jung-Sun;Oh, Hea-Sook;Yoon, Sun
    • Korean journal of food and cookery science
    • /
    • v.11 no.5
    • /
    • pp.542-547
    • /
    • 1995
  • Pectinesterase was isolated from the culture medium of Aspergillus japonicus and partially purified by DEAE-Sephadex batchwise, Sephadex G-75 gel filtration and ion exchange chromatography. The purified enzyme solution was completely free from polygalacturonase which depolymerizes pectin molecule. The ability of the pectinesterase to demethylate high methoxyl pectin was investigated. On 20 minute of incubation methoxyl content of low methoxyl pectin decreased from 88% to 6.93%. In general gel prepared with the pectin containing lower methoxyl content showed the lower value of percent sag, and showed the hieher Bel strength. Textural characteristics of pectin gel determined by Rheometer showed that as the methoxyl content was lowered, hardness and resilience of the gel were increased and cohesiveness was decreased. Apple juice containing HMP and organic acids can be converted into low methoxyl pectin apple jelly by the action of pectinesterase and addition of calcium ion. The strength of low methoxyl pectin apple jelly increased when it stored at room temperature.

  • PDF

Screening and Characterization of Lactate Dehydrogenase-producing Microorganism

  • Sung, Ha Guyn;Lee, Jae Heung;Shin, Hyung Tai
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.17 no.10
    • /
    • pp.1411-1416
    • /
    • 2004
  • The objective of this work was to isolate a microorganism, able to produce high lactate dehydrogenase (LDH) activity, for use as a microbial feed additive. The LDH is an important enzyme for lactate conversion in the rumen, thereby possibly overcoming lactic acidosis owing to sudden increases of cereal in the diets of ruminants. In the present study, various bacterial strains were screened from a variety of environments. Among the isolated microorganisms, strain FFy 111-1 isolated from a Korean traditional fermented vegetable food called Kimchi showed the highest enzyme activity, along with retaining strong enzyme activity even in rumen fluid in vitro. Based on morphological and biochemical characteristics as well as compositions of cellular fatty acids plus API analyses, this strain was identified as Lactobacillus sp. The optimum temperature and pH for growth were found to be 30$^{\circ}C$ and pH 6.5, respectively. A maximum cell growth of 2.2 at $A_{650}$ together with LDH activity of 2.08 U per mL was achieved after 24 h of incubation. Initial characterization of FFy 111-1 suggested that it could be a potential candidate for use as a direct-fed microbial in the ruminant animals.

The Production and Enzymatic Properties of Extracellular Chitinase from Pseudomonas stutzeri YPL-1, as a Biocontrol Agent

  • Lim, Ho-Seong;Kim, Sang-Dal
    • Journal of Microbiology and Biotechnology
    • /
    • v.4 no.2
    • /
    • pp.134-140
    • /
    • 1994
  • An antagonistic bacterium Pseudomonas stutzeri YPL-1 liberated extracellular chitinase and $\beta$-1,3-glucanase which are key enzymes in the decomposition of fungal hyphal walls. The lytic enzymes caused abnormal swelling and retreating at the hyphal tips of plant pathogenic fungus Fusarium solani in a dual culture. Scanning electron microscopy revealed the hyphal degradation of F. solani in the regions interacting with P. stutzeri YPL-1. The production of chitinase and properties of a crude preparation of the enzyme from P. stutzeri YPL-1 were investigated. Peak of the chitinase activity was detected after 4 hr of cultivation. The enzyme had optimum temperature and pH of 50$^{\circ}C$ and pH 5.3, respectively. The enzyme was stable in the pH range of 3.5 to 6.0 up to 50$^{\circ}C$. The enzyme was significantly inhibited by metal compounds such as $HgCl_2$, but was stimulated by $CoCl_2$. P. stutzeri YPL-1 produced high levels of the enzyme after 84 hr of incubation. Among the tested carbon sources, chitin was the most effective for the enzyme production, at the concentration level of 3%. As a source of nitrogen, peptone was the best for the enzyme production, at the concentration level of 4%. The maximum amount of enzyme was produced by cultivating the bacterium at a medium of initial pH 6.8.

  • PDF

Comparison of Cenangium Dieback Fungus Isolated from Three Different Species of Pine

  • Jung, Joo-Hae;Lee, Sang-Yong;Lee, Jong-Kyu
    • The Plant Pathology Journal
    • /
    • v.17 no.4
    • /
    • pp.216-221
    • /
    • 2001
  • Dieback of pine branches or twigs with brown needles occurs most commonly on Pinus species after severe winter in Korea. In this study, Cenangium ferruginosum was isolated from infected stems, branches, and twigs of Pinus koraiensis (C1), P. densiflora (C2), and P. thunbergii (C3). Morphological and cultural characteristics of the isolates were than compared. There were no significant differences in the morphological characteristics of conidia and ascospores produced by the three isolates. However, cultural differences were observed among the isolates. Optimum temperatures for mycelial growth of C1, C2, and C3 were 15, 20, and $20^{\circ}$, respectively. C1 produced a few conidia and no ascospores, while C2 and C3 produced abundant ascospores and conidia. While optimum temperatures for mycelial growth ranged from 15 to $20^{\circ}$, mycelial growth was also relatively good at lower temperatures of 5-$10^{\circ}$. Conidiomata and conidia were produced on MSA (malt extract soya peptone agar) after 25-30 days of incubation in the dark at $15^{\circ}$. Apothecia were produced by altering culture condition from 15 to $20^{\circ}$, and incubating for 35-60 more days. Optimum temperature for ascospore and conidium germination was $20^{\circ}$. RAPD analysis revealed that there was high similarity of 0.78 between C2 and C3, and low similarity of 0.31 between C2 or C3 and C1.

  • PDF

Purification and Characterization of Xylanase II from Trichoderma koningii ATCC 26113 (Trichoderma koningii ATCC 26113으로부터 Xylanase II의 순수분리 및 특성)

  • Kim, Hyun-Ju;Kang. Sa Ouk;Hah, Yung-Chil
    • Korean Journal of Microbiology
    • /
    • v.31 no.2
    • /
    • pp.157-165
    • /
    • 1993
  • A 1, 4-.betha.-D-xylanase, designated as xylanase II, was purified from the culture filtrate of Trichoderma koningii ATCC 251131 by column chromatography on Sephadex G-75, SP-Sephadex C-50, DEAE-Sephadex A-50 and Sephadex G-50 with an overall yield of 6.97%. It has a molecular weight of 21.000 and an isoelectric point of 9.4. The enzyme activity is optimal at pH 5.0 and at a temperature of 50.deg.C. Xylanase II is stable up to 50.deg.C, while 40 and 90% of its activity are lost after the incubation for 30 and 60 min at 60.deg.C. The enzyme degrades xylan with relatively high activity, as well as carboxymethylcellulose and Avicel. Its $K_{m}$ values for oat-spelt xylan, larchwood xylan and Avicel are 7.48, 1.98 and 13.33 mg/ml, respectively. The hydrolysis products of oat-spelt xylan by xylanase II are xylose, xylobiose, xylotriose and arabinoxylotriose, while the reaction products of larchwood xylan are xylose, xylobiose, xylotriose and small amount of higher oligomers. The action paterns of the enzyme demonstrate that xylanase II is endo-enzyme.

  • PDF

Preparation of plastein product from soymilk residue protein (두유박 단백질을 이용한 plastein의 합성)

  • Lee, Sang-Joon;Park, Woo-Po;Moon, Tae-Wha;Kim, Ze-Uook
    • Applied Biological Chemistry
    • /
    • v.35 no.6
    • /
    • pp.501-506
    • /
    • 1992
  • Pepsin-catalyzed hydrolysis and plastein reaction were carried out to prepare plastein product from soymilk residue protein. Conditions required for optimal hydrolysis of soymilk residue protein and subsequent plastein production were investigated. The optimum substrate concentration, enzyme-substrate ratio, pH, reaction temperature and incubation time for hydrolysis were 3%, 1/50, 1.7, $45^{\circ}C$ and 24 hours, respectively. Plastein formation from peptic hydrolysate of soymilk residue protein was most effective at substrate concentratin of 40%, pH 4 and $45^{\circ}C$. Reaction time of 18 hours and enzyme-substrate ratio of 1/100 were selected for plastein production. Electrophoresis of the products revealed that protein-like substances of high molecular weight were produced from the plastein reaction.

  • PDF

Immobilization of α-amylase from Exiguobacterium sp. DAU5 on Chitosan and Chitosan-carbon Bead: Its Properties

  • Fang, Shujun;Chang, Jie;Lee, Yong-Suk;Hwang, Eun-Jung;Heo, Jae Bok;Choi, Yong-Lark
    • Journal of Applied Biological Chemistry
    • /
    • v.59 no.1
    • /
    • pp.75-81
    • /
    • 2016
  • Glutaraldehyde was used as a cross-linking agent for immobilization of purified ${\alpha}$-amylase from Exiguobacterium sp. DAU5. Befitting concentration of glutaradehyde and cross-linking time is the key to preparation of cross-linking chitosan beads. Based on optimized immobilization condition for ${\alpha}$-amylase, an overall yield of 56% with specific activity of 2,240 U/g on chitosan beads and 58% with specific activity of 2,320 U/g on chitosan-carbon beads was obtained. The optimal temperature and pH of each immobilized enzyme activity were $50^{\circ}C$ and 50 mM glycine-NaOH buffer pH 8.5, respectively. Those retained more than 75 and 90% of its maximal enzyme activity at pH 7.0-9.5 and after incubation at $50^{\circ}C$ for 1 h, respectively. In addition, the immobilization product showed higher organic-solvent tolerance than free enzymes. The mode of hydrolyzing soluble starch revealed that the ${\alpha}$-amylase possessed high hydrolyzing activity. These results indicate that chitosan is good support and has broad application prospects of enzyme immobilization.

Purification and Characterization of an Antibacterial Substance from Aerococcus urinaeequi Strain HS36

  • Sung, Ho Sun;Jo, Youl-Lae
    • Journal of Microbiology and Biotechnology
    • /
    • v.30 no.1
    • /
    • pp.93-100
    • /
    • 2020
  • A bacterial strain inhibiting the growth of Vibrio anguillarum, the causative agent of vibriosis, was isolated from fish intestines. The isolated strain HS36 was identified as Aerococcus urinaeequi based on the characteristics of the genus according to Bergey's Manual of Systematic Bacteriology and by 16S rRNA sequencing. The growth rate and antibacterial activity of strain HS36 in shaking culture were higher than those in static culture, while the optimal pH and temperature for antibacterial activity were 7.0 and 30℃, respectively. The active antibacterial substance was purified from a culture broth of A. urinaeequi HS36 by Sephadex G-75 gel chromatography, Sephadex G-25 gel chromatography, and reverse-phase high-performance liquid chromatography. Its molecular weight, as estimated by Tricine SDS-polyacrylamide gel electrophoresis, was approximately 1,000 Da. The antibacterial substance produced by strain HS36 was stable after incubation for 1 h at 100℃. Although its antibacterial activity was optimal at pH 6-8, activity was retained at a pH range from 2 to 11. The purified antibacterial substance was inactivated by proteinase K, papain, and β-amylase treatment. The newly purified antibacterial substance, classified as a class II bacteriocin, inhibited the growth of Klebsiella pneumoniae, Salmonella enterica, and Vibrio alginolyticus.

Potential of Immobilized Whole-Cell Methylocella tundrae as a Biocatalyst for Methanol Production from Methane

  • Mardina, Primata;Li, Jinglin;Patel, Sanjay K.S.;Kim, In-Won;Lee, Jung-Kul;Selvaraj, Chandrabose
    • Journal of Microbiology and Biotechnology
    • /
    • v.26 no.7
    • /
    • pp.1234-1241
    • /
    • 2016
  • Methanol is a versatile compound that can be biologically synthesized from methane (CH4) by methanotrophs using a low energy-consuming and environment-friendly process. Methylocella tundrae is a type II methanotroph that can utilize CH4 as a carbon and energy source. Methanol is produced in the first step of the metabolic pathway of methanotrophs and is further oxidized into formaldehyde. Several parameters must be optimized to achieve high methanol production. In this study, we optimized the production conditions and process parameters for methanol production. The optimum incubation time, substrate, pH, agitation rate, temperature, phosphate buffer and sodium formate concentration, and cell concentration were determined to be 24 h, 50% CH4, pH 7, 150 rpm, 30℃, 100 mM and 50 mM, and 18 mg/ml, respectively. The optimization of these parameters significantly improved methanol production from 0.66 to 5.18 mM. The use of alginate-encapsulated cells resulted in enhanced methanol production stability and reusability of cells after five cycles of reuse under batch culture conditions.

Preparation of Yeast Hydrolysate Enriched in Cyclo-His-Pro (CHP) by Enzymatic Hydrolysis and Evaluation of Its Functionality

  • Lee, Hyun Jung;Son, Heung Soo;Park, Chung;Suh, Hyung Joo
    • Preventive Nutrition and Food Science
    • /
    • v.20 no.4
    • /
    • pp.284-291
    • /
    • 2015
  • In this study, we attempted to enrich cyclo-His-Pro (CHP) using enzymatic hydrolysis of yeast and to evaluate the functionality of yeast hydrolysate (YH)-enriched CHP. Flavourzyme offered a better performance in enhancing CHP content than other proteases. The CHP enrichment conditions were optimized as follows: addition of 1% Flavourzyme, 48-h incubation at 60oC, and pH 6.0. The CHP content significantly increased by 20-fold after ultra-filtration (UF). Maximal CHP translation was obtained after heating for 8 h at 50oC and pH 7.0. YH showed poor foaming capacity between pH 3.0 to 9.0. The emulsifying activities of YHs were slightly higher at near acidic pH. Increase in heating temperature and time resulted in decreased CHP content. The results indicate that YH is more heat stable after UF. Therefore, the CHP in YH after UF can be used as a food additive with physiological CHP activity and high heat stability.