• Title/Summary/Keyword: High temperature history

Search Result 190, Processing Time 0.025 seconds

Geochronology and Cooling history of the Mesozoic Granite Plutons in the Central Part of the Ogcheon Fold Belt, South Korea (남한 습곡대 중앙부의 중생대 화강암 질암의 생선년대와 냉각사)

  • Myung-Shik JIN
    • The Journal of the Petrological Society of Korea
    • /
    • v.4 no.2
    • /
    • pp.153-167
    • /
    • 1995
  • Emplacement ages for the granite plutons of the Jurassic and the Cretaceous times in the central Ogcheom Fold Belt were determined by Rb-Sr whole rock and mineral isocheon methods. In addition mineral ages for the plutons were determined by K-Ar and fission track methods. In turn, thermal histories and uplifting rates of the granitic bodies are elucidated from the isotopic ages. The Jecheon(~203 Ma) and Mungyeong(at lest~200 Ma) granites of the Jurassic and the Muamsa, Wolagsan and Daeyasan granites(~110 Ma) of the Cretaceous show high strontium initial ratios [$(^{87}Sr/^{86}Sr)_1$0.7100],suggesting that the granitic magmas have been generated by partial melting of crustal materials (S-type), or by mixing of mantle and crustal materials. Only mineral ages of the Sogrisan and Hyeongjebong granites (~90 Ma) were determined by K-Ar method, and petrogenesis of them were not defined yet. The two Jurassic granite plutons were cooled rapidly down to $300^{\circ}C$, right after the plutons were slowly cooled down since then, due to their deep emplacment. During the Middle Cretaceous period, the Jurassic Mungyeong granitic pluton was intruded and thermally affected much by the surrounding Wolagsan and Daeyasan granites. Accordingly the Rb-Sr mineral age, K-Ar hornblende and biotite ages of the Mungyeong granite appear to be reduced or reset due to the thermal effects above their blocking temperatures. All the cretaceous granites have been cooled much ore simply and rapidly down than the Jurassic ones below $300^{\circ}C$, owing to their shallow emplacement.

  • PDF

Effect of Welding Thermal Cycle on Microstructure and Pitting Corrosion Property of Multi-pass Weldment of Super-duplex Stainless Steel (슈퍼 듀플렉스 스테인리스강 다층용접부의 미세조직 및 공식(Pitting Corrosion)에 미치는 용접열사이클의 영향)

  • Nam, Seong-Kil;Park, Se-Jin;Na, Hye-Sung;Kang, Chung-Yun
    • Journal of Welding and Joining
    • /
    • v.28 no.4
    • /
    • pp.18-25
    • /
    • 2010
  • Super-duplex stainless steels (SDSS) have a good balance of mechanical property and corrosion resistance when they consist of approximately equal amount of austenite and ferrite. The SDSS needs to avoid the detrimental phases such as sigma(${\sigma}$), chi(${\chi}$), secondary austenite(${\gamma}2$), chromium carbide & nitride and to maintain the ratio of ferrite & austenite phase as well known. However, the effects of the subsequent weld thermal cycle were seldom experimentally studied on the micro-structural variation of weldment & pitting corrosion property. Therefore, the present study investigated the effect of the subsequent thermal cycle on the change of weld microstructure and pitting corrosion property at $40^{\circ}C$. The thermal history of root side was measured experimentally and the change of microstructure of weld root & the weight loss by pitting corrosion test were observed as a function of the thermal cycle of each weld layer. The ferrite contents of root weld were reduced with the subsequent weld thermal cycles. The pitting corrosion was occurred in the weld root region in case of the all pitted specimen & in the middle weld layer in some cases. And the weight loss by pitting corrosion was increased in proportional to the time exposed at high temperature of the root weld and also by the decrease of ferrite content. The subsequent weld thermal cycles destroy the phase balance of ferrite & austenite at the root weld. Conclusively, It is thought that as the more subsequent welds were added, the more the phase balance of ferrite & austenite was deviated from equality, therefore the pitting corrosion property was deteriorated by galvanic effect of the two phases and the increase of 2nd phases & grain boundary energy.

Mortality Prediction of Older Adults Using Random Forest and Deep Learning (랜덤 포레스트와 딥러닝을 이용한 노인환자의 사망률 예측)

  • Park, Junhyeok;Lee, Songwook
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.9 no.10
    • /
    • pp.309-316
    • /
    • 2020
  • We predict the mortality of the elderly patients visiting the emergency department who are over 65 years old using Feed Forward Neural Network (FFNN) and Convolutional Neural Network (CNN) respectively. Medical data consist of 99 features including basic information such as sex, age, temperature, and heart rate as well as past history, various blood tests and culture tests, and etc. Among these, we used random forest to select features by measuring the importance of features in the prediction of mortality. As a result, using the top 80 features with high importance is best in the mortality prediction. The performance of the FFNN and CNN is compared by using the selected features for training each neural network. To train CNN with images, we convert medical data to fixed size images. We acquire better results with CNN than with FFNN. With CNN for mortality prediction, F1 score and the AUC for test data are 56.9 and 92.1 respectively.

Preliminary Structural Design of Blast Hardened Bulkhead (The 1st Report : Formulation of Simplified Structural Analysis/Design Method) (폭발강화격벽의 초기구조설계에 관한 연구 (제1보 : 간이 구조 해석/설계 기법 정식화))

  • Nho, In Sik;Park, Man-Jae;Cho, Yun Sik
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.55 no.5
    • /
    • pp.371-378
    • /
    • 2018
  • Internal detonation of a warhead inside a compartment of naval vessel can result in serious blast damages including plastic deformation and rupture of the structural members especially bulkhead due to the huge explosive impact pressure, fragments and high temperature flame. To secure watertight integrity and to prevent the domino-type flooding of neighbouring compartments caused by the rupture of bulkheads, it is necessary to develop the structural design technology of Blast Hardened Bulkheads(BHB) which can resist the blast impact pressure of threatening weapons to increase the survivability of naval vessels. This study dealt with the simplified structural response analysis of BHB under impact pressure of confined explosion and aimed to develop the efficient and rational design method of BHB and joint structures which can be applied at initial design stage. The present 1st report dealt with the phenomena of explosive detonation surveying the preceding experimental/theoretical research and the characteristics of time history of blast pressure including the peak value and duration time were examined. And to predict the large plastic deformation behaviors of BHB by the huge blast pressure reasonably, the plastic hinge method including the membrane effects was formulated. It was applied to the simplified structural design equations. The following report will deal with the application and adjustment process of the structural scantling equations to the actual BHB design and verification of validity of them.

Development of CCD(Corrosion Control Document) in Refinery Process (정유공정의 CCD(Corrosion Control Document) 개발)

  • Kim, Jung-Hwan;Kim, Ji-Yong;Lee, Young-Hee;Park, Sang-Rok;Suh, Sun-Kyu;Lee, Yoon-Hwa;Moon, Il
    • Journal of the Korean Society of Safety
    • /
    • v.24 no.1
    • /
    • pp.31-36
    • /
    • 2009
  • This paper focuses on techniques of improving refinery reliability, availability, and profitability. Our team developed a corrosion control document(CCD) for processing of the crude distillation unit(CDU). Recent study shows the loss due to corrosion in US is around $276 billion. It's a big concern for both managers and engineers of refinery industry. The CCD consists of numerous parts namely damage mechanism(DM), design data, critical reliability variable(CRV), guidelines, etc. The first step in the development of CCD is to build material selection diagram(MSD). Damage mechanisms affecting equipments and process need to be chosen carefully based on API 571. The selected nine DM from API 571 are (1) creep/stress rupture, (2) fuel ash corrosion, (3) oxidation, (4) high temperature sulfidation, (5) naphthenic acid corrosion, (6) hydrochloric acid(HCL) corrosion, (7) ammonium chloride(salt) corrosion, (8) wet $H_2S$ corrosion, and (9) ammonia stress corrosion cracking. Each DM related to corrosion of CDU process was selected by design data, P&ID, PFD, corrosion loop, flow of process, equipment's history, and experience. Operating variables affecting severity of DM are selected in initial stage of CRV. We propose the guidelines for reliability of equipments based on CRV. The CCD has been developed on the basis of the corrosion control in refinery industry. It also improves the safety of refinery process and reduces the cost of corrosion greatly.

Analysis of Warpage of Fan-out Wafer Level Package According to Molding Process Thickness (몰드 두께에 의한 팬 아웃 웨이퍼 레벨 패키지의 Warpage 분석)

  • Seung Jun Moon;Jae Kyung Kim;Euy Sik Jeon
    • Journal of the Semiconductor & Display Technology
    • /
    • v.22 no.4
    • /
    • pp.124-130
    • /
    • 2023
  • Recently, fan out wafer level packaging, which enables high integration, miniaturization, and low cost, is being rapidly applied in the semiconductor industry. In particular, FOWLP is attracting attention in the mobile and Internet of Things fields, and is recognized as a core technology that will lead to technological advancements such as 5G, self-driving cars, and artificial intelligence in the future. However, as chip density and package size within the package increase, FOWLP warpage is emerging as a major problem. These problems have a direct impact on the reliability and electrical performance of semiconductor products, and in particular, cause defects such as vacuum leakage in the manufacturing process or lack of focus in the photolithography process, so technical demands for solving them are increasing. In this paper, warpage simulation according to the thickness of FOWLP material was performed using finite element analysis. The thickness range was based on the history of similar packages, and as a factor causing warpage, the curing temperature of the materials undergoing the curing process was applied and the difference in deformation due to the difference in thermal expansion coefficient between materials was used. At this time, the stacking order was reflected to reproduce warpage behavior similar to reality. After performing finite element analysis, the influence of each variable on causing warpage was defined, and based on this, it was confirmed that warpage was controlled as intended through design modifications.

  • PDF

(U-Th)/He Dating on Martian Meteorites: Reviews and Perspectives (화성운석에 대한(U-Th)/He 연령 측정: 기존 연구 및 전망)

  • Min, Kyoung-Won;Lee, Seung-Ryeol
    • The Journal of the Petrological Society of Korea
    • /
    • v.19 no.4
    • /
    • pp.255-267
    • /
    • 2010
  • The primary utilization of recently improved (U-Th)/He thermochronometry is to reveal the low-T thermal histories of shallow crustal sections or transient episodes (such as wildfires or meteorite impacts) because of the high sensitivity of He diffusion to temperature in host minerals. In this contribution, we present reviews and perspectives regarding how this method can be used to characterize the ejection-related shock metamorphism of Martian meteorites. The temperature conditions of shock metamorphism can be constrained through shock recovery experiments, paleomagnetism, and $^{40}Ar/^{39}Ar$ and (U-Th)/He dating. The most reliable constraints can be deduced when these independent approaches are combined. However, the thermal history of the ALH84001 Martian meteorite has been under serious debate because the different methods have yielded contrasting results. Recent work has shown how single-grain (U-Th)/He and $^{40}Ar/^{39}Ar$ dating, two noble-gas based thermochronometries with different T sensitivities, can be used to resolve this issue, providing a good example for future research on other meteorites.

COATED PARTICLE FUEL FOR HIGH TEMPERATURE GAS COOLED REACTORS

  • Verfondern, Karl;Nabielek, Heinz;Kendall, James M.
    • Nuclear Engineering and Technology
    • /
    • v.39 no.5
    • /
    • pp.603-616
    • /
    • 2007
  • Roy Huddle, having invented the coated particle in Harwell 1957, stated in the early 1970s that we know now everything about particles and coatings and should be going over to deal with other problems. This was on the occasion of the Dragon fuel performance information meeting London 1973: How wrong a genius be! It took until 1978 that really good particles were made in Germany, then during the Japanese HTTR production in the 1990s and finally the Chinese 2000-2001 campaign for HTR-10. Here, we present a review of history and present status. Today, good fuel is measured by different standards from the seventies: where $9*10^{-4}$ initial free heavy metal fraction was typical for early AVR carbide fuel and $3*10^{-4}$ initial free heavy metal fraction was acceptable for oxide fuel in THTR, we insist on values more than an order of magnitude below this value today. Half a percent of particle failure at the end-of-irradiation, another ancient standard, is not even acceptable today, even for the most severe accidents. While legislation and licensing has not changed, one of the reasons we insist on these improvements is the preference for passive systems rather than active controls of earlier times. After renewed HTGR interest, we are reporting about the start of new or reactivated coated particle work in several parts of the world, considering the aspects of designs/ traditional and new materials, manufacturing technologies/ quality control quality assurance, irradiation and accident performance, modeling and performance predictions, and fuel cycle aspects and spent fuel treatment. In very general terms, the coated particle should be strong, reliable, retentive, and affordable. These properties have to be quantified and will be eventually optimized for a specific application system. Results obtained so far indicate that the same particle can be used for steam cycle applications with $700-750^{\circ}C$ helium coolant gas exit, for gas turbine applications at $850-900^{\circ}C$ and for process heat/hydrogen generation applications with $950^{\circ}C$ outlet temperatures. There is a clear set of standards for modem high quality fuel in terms of low levels of heavy metal contamination, manufacture-induced particle defects during fuel body and fuel element making, irradiation/accident induced particle failures and limits on fission product release from intact particles. While gas-cooled reactor design is still open-ended with blocks for the prismatic and spherical fuel elements for the pebble-bed design, there is near worldwide agreement on high quality fuel: a $500{\mu}m$ diameter $UO_2$ kernel of 10% enrichment is surrounded by a $100{\mu}m$ thick sacrificial buffer layer to be followed by a dense inner pyrocarbon layer, a high quality silicon carbide layer of $35{\mu}m$ thickness and theoretical density and another outer pyrocarbon layer. Good performance has been demonstrated both under operational and under accident conditions, i.e. to 10% FIMA and maximum $1600^{\circ}C$ afterwards. And it is the wide-ranging demonstration experience that makes this particle superior. Recommendations are made for further work: 1. Generation of data for presently manufactured materials, e.g. SiC strength and strength distribution, PyC creep and shrinkage and many more material data sets. 2. Renewed start of irradiation and accident testing of modem coated particle fuel. 3. Analysis of existing and newly created data with a view to demonstrate satisfactory performance at burnups beyond 10% FIMA and complete fission product retention even in accidents that go beyond $1600^{\circ}C$ for a short period of time. This work should proceed at both national and international level.

The study for musculoskeletal symptoms and job stress in firemen (소방관의 근골격계 증상과 직무 스트레스에 관한 연구)

  • Kim, Jung Man;Suh, Byung Seong;Jung, Kap Yeol;Kim, Dong Il;Kim, Won Sool;Cho, Han Seok;Kim, Jin Wook;Kwon, Jae;Yoon, Dong Young;Kim, Jung Il;Roh, Young-Man
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.17 no.2
    • /
    • pp.111-119
    • /
    • 2007
  • Firemen are directly exposed to various harmful chemicals, physical factors and mental stress during rescue and fire-fighting. In fire extinguishing, unstable posture, poisonous gas, dust, high temperature and heavy equipments are possible hazardous factors. The alertness for emergency, shift work, job strain and stress are also possibly hazardous. Therefore, this study aimed to investigate the prevalence of musculo-skeletal symptoms and job stress and to determine risk factors in firemen. This study was carried out in a group of 226 firemen in Busan City, Korea. Standardized Nordic Questionnaire was used to investigate the prevalence of musculo-skeletal symptoms and Psycho-social Well-being Index (abbreviated PWI) was used to investigate the prevalence of job stress. General and occupational characteristics were included education, marital status, alcohol and smoking history, working duration, and work shift system. Body mass index (BMI) scores were calculated by physical examination including height and weight. Concerning musculo-skeletal complaints, the commonest site was neck, and shoulder, lower back, upper back were the next. Complaint site above one area of body was about 80%. From multiple logistic regression analysis, working duration was significant variable in musculo-skeletal symptoms. Odds ratio were 15.4 in working duration. About 16.8% was high risk stress group. From multiple logistic regression analysis, shift work and alcohol drinking were significant variables in PWI scores. Odds ratios were 2.25 in shift work. Accordingly, interventions are needed for health promotion of long term and shift worker.

The Late Quaternary Environmental Change in Youngyang Basin, South Eastern Part of Korea Penninsula (第四紀 後期 英陽盆地의 自然環境變化)

  • Yoon, Soon-Ock;Jo, Wha-Ryong
    • Journal of the Korean Geographical Society
    • /
    • v.31 no.3
    • /
    • pp.447-468
    • /
    • 1996
  • The peat layer was deposited on the abandoned channel of incised meander of River Banbyuncheon with 7 meter thickness on Youngyang basin. The late Quaternary environmental change on the study area was discussed based on pollen anaalysis and radiocarbon-dating from this peat. The swamp which was caused to sediment the peat, was produced by which the fan debris from the adjacent slope damed the waterflow on the abandoned channel. The peat layer contains continuous vegetational history from 60,000y.B.P. to Recent. The peat deposit was divided into two layers by the organic thin sand horizon, which was sedimented at one time and made unconformity between the lower decomposed compact peat layers and the upper fresh fiberous peat layer. As the result of the pollen analysis, both peat layers from the two boring sites, Profile YY1 and Profile YY2 were divided into five Pollenzones(Pollenzone I, II, III, IV and V) and 12 Subzones which were mainly corresponded by the AP (Arboreal Pollen)-Dominance. The two profiles have some differences on the sedimentary facies and on the pollen composition as well. Therefore these were in common with the Pollenone III, however the Pollenzone I and II existed only on the Profile YY1 and the Pollenzone IV and V existed only on the Profile YY2. The lower layer containing the Pollenzone I, II and III revealed vegetational records of Pleistocene, which was characterized as tundra-like landscape and thin forested landscapes. It represented the NAP (Non-Arboreal Pollen)-period with a plenty of Artemisia sp., Sanguisorba sp., Umbelliferae, Gramineae and Cyperaceae. However a relatively high proportion of the boreal trees with Picea sp., Pinus sp. and Betula sp. as AP was observed in the lower layer. The upper layer contained the Pollenzone IVb and V and vegetational history in Holocene which was characterized by thick forested landscape with rich tree pollen. It represented AP-period with plenty of Pinus sp. and Quercus sp. as temperate trees. The temperature fluctuation supposed from the vegetational records is as follows; the Pollenzone I(Betula-Dominance, about 57,000y.B.P.) represents relatively cold period. The Pollenzone II(EMW-Domi-nance, 57,000-43,000y.B.P.)represents relatively warm period. This period is supposed to be Interstadial, the transi-tional stage from Alt- to Mittel Wurm. The Pollenzone III(Butula-, Pinus- and Picea-Dominace in turns, 43,000-15,000y.B.P.) reproesents cold period which had been built from Mittel-to Jung Wurm. Especially the Subzone IIId represents the coldest period throughout the Pollenzone III. It is corresponds to Wurm Glacial Maximu. It is supposed that the mean temperature in July of this period was coller about 10${^\circ}$C than present. The Pollenzone IV and V represent the vegetational history of Holocene. Tilia, Quercus and Pinus were dominant in turns during this period. Subzone IVb and Pollenzone I and II at east coastal plain of Korean penninsula reported by JO(1979).

  • PDF