Browse > Article

(U-Th)/He Dating on Martian Meteorites: Reviews and Perspectives  

Min, Kyoung-Won (Department of Geological Sciences, University of Florida)
Lee, Seung-Ryeol (Geological Research Division, Korea Institute of Geoscience and Mineral Resources)
Publication Information
The Journal of the Petrological Society of Korea / v.19, no.4, 2010 , pp. 255-267 More about this Journal
Abstract
The primary utilization of recently improved (U-Th)/He thermochronometry is to reveal the low-T thermal histories of shallow crustal sections or transient episodes (such as wildfires or meteorite impacts) because of the high sensitivity of He diffusion to temperature in host minerals. In this contribution, we present reviews and perspectives regarding how this method can be used to characterize the ejection-related shock metamorphism of Martian meteorites. The temperature conditions of shock metamorphism can be constrained through shock recovery experiments, paleomagnetism, and $^{40}Ar/^{39}Ar$ and (U-Th)/He dating. The most reliable constraints can be deduced when these independent approaches are combined. However, the thermal history of the ALH84001 Martian meteorite has been under serious debate because the different methods have yielded contrasting results. Recent work has shown how single-grain (U-Th)/He and $^{40}Ar/^{39}Ar$ dating, two noble-gas based thermochronometries with different T sensitivities, can be used to resolve this issue, providing a good example for future research on other meteorites.
Keywords
Martian meteorite; (U-Th)/He dating; Thermochronology; Shock metamorphism; Phosphate;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Becker, R.H. and Pepin, R.O., 1984, The case for a martian origin of the shergottites: Nitrogen and noble gases in EETA79001. Earth and Planetary Science Letters, 69, 225-242.   DOI   ScienceOn
2 Fritz, J., Artemieva, N. and Greshake, A., 2005, Ejection of Martian meteorites. Meteoritics and Planetary Science, 40, 1393-1411.   DOI   ScienceOn
3 Kirschvink, J.L., Maine, A.T. and Vali, H., 1997, Paleomagnetic evidence of a low-temperature origin of carbonate in the martian meteorite ALH84001. Science, 275, 1629-1633.   DOI   ScienceOn
4 McSween, H.Y. and Jarosewich, E., 1983, Petrogenesis of the Elephant Moraine A79001 meteorite Multiple magma pulses on the shergottite parent body. Geochimica et Cosmochimica Acta, 47, 1501-1513.   DOI   ScienceOn
5 Mikouchi, T., Miyamoto, M. and McKay, G.A., 2001, Mineralogy and petrology of the Dar al Gani 476 martian meteorite: Implications for its cooling history and relationship to other shergottites. Meteoritics and Planetary Science, 36, 531-548.   DOI   ScienceOn
6 Reimold, W.U. and Stoffler, D., 1978, Experimental shock metamorphism of dunite. Proceedings of Lunar and Planetary Science Conference, 9, 2805-2824.
7 Schwandt, C.S., 2001, The magma composition of EETA 79001A: The first recount. Lunar and Planetary Science XXXII, 1913.
8 Schmitt, R.T., 2000,. Shock experiments with the H6 chondrite Kernouve. Meteoritics and Planetary Science, 35, 545-560.   DOI   ScienceOn
9 Harvey, R.P., McCoy, T.J. and Leshin, L.A., 1996, Shergottite QUE 94201: Texture, mineral composition, and comparison with other basaltic shergottites. Lunar and Planetary Science, XXVII, 497-498.
10 Schultz, L. and Franke, L., 2004, Helium, neon, and argon in meteorites: A data collection. Meteoritics and Planetary Science, 39, 1889-1890.   DOI   ScienceOn
11 Mitchell, S.G. and Reiners, P. W., 2003, Influence of Wildfires on Apatite and Zircon (U-Th)/He Ages. Geology, 31, 1025-1028.   DOI   ScienceOn
12 Harper Jr, C.L., Nyquist, L.E., Bansal, B., Wiesmann, H. and Shih, C.-Y., 1995, Rapid accretion and early differentiation of Mars indicated by $^{142}Nd/^{144}Nd$ in SNC meteorites. Science, 267, 213-217.   DOI   ScienceOn
13 Reiners, P.W., 2002, (U-Th)/He chronometry experiences a renaissance. Eos, 83, 21-27.
14 Reiners, P.W. and Farley, K.A., 2001. Influence of crystal size on apatite (U-Th)/He thermochronology: an example from the Bighorn Mountains, Wyoming Earth and Planetary Science Letters, 188, 413-420.   DOI   ScienceOn
15 Reiners, P.W. and Nicolescu, S., 2006, Measurement of parent nuclides for (U-Th)/He chronometry by solution sector ICP-MSARHDL Report. University of Arizona, page.
16 Rubin, A.E., Warren, P.H., Greenwood, J.P., Verish, R.S., Leshin, L.A., Hervig, R.L., Clayton, R.N. and Mayeda, T.K., 2000, Los Angeles: The most differentiated basaltic martian meteorite. Geology, 28, 1011-1014.   DOI   ScienceOn
17 Owen, T., Biemann, K., Rushneck, D.R., Biller, J.E., Howarth, D.W. and Lafleur, A.L., 1977, The Composition of the Atmosphere at the Surface of Mars. Journal of Geophysical Research, 82, 4635-4639.   DOI
18 Greshake, A., Fritz, J. and Stoffler, D., 2004, Petrology and shock metamorphism of the olivine-phyric shergottite Yamato 980459 - Evidence for a two-stage cooling and a single-stage ejection history. Geochimica et Cosmochimica Acta, 68, 2359-2377.   DOI   ScienceOn
19 Nyquist, L.E., Bogard, D.D., Shih, C.-Y., Greshake, A., Stoffler, D. and Eugster, O., 2001, Ages and geologic histories of Martian meteorites. Space Science Review, 96, 105-164.   DOI
20 Ostertag, R., 1983, Shock experiments on feldspar crystals. Journal of Geophysical Research, 88, B364-376.   DOI
21 Paneth, F.A., Urry, W.D. and Koeck, W., 1930, The age of iron meteorites. Nature, 125, 490-491.
22 Pepin, R.O., 1985, Evidence of Martian origins. Nature, 317, 473-475.   DOI
23 Ehlers, T.A. and Farley, K.A., 2003, Apatite (U-Th)/He thermochronometry: methods and applications to problems in tectonic and surface processes. Earth and Planetary Science Letters, 206, 1-14.   DOI   ScienceOn
24 Gnos, E., Hofmann, B., Franchi, I.A., Al-Kathiri, A., Hauser, M. and Moser, L., 2002, Sayh al Uhaymir 094: A new martian meteorite from the Oman desert. Meteoritics and Planetary Science, 37, 835-854.   DOI   ScienceOn
25 Greenwood, J.P. and McSween Jr., H.Y., 2001, Petrogenesis of Allan Hills 84001: constraints from impact melted feldspathic and silica glasses. Meteoritics and Planetary Science, 36, 43-61.   DOI   ScienceOn
26 Min, K. and Reiners, P.W., 2007, High-temperature Mars-to-Earth transfer of meteorite ALH84001. Earth and Planetary Science Letters, 260, 72-85.   DOI   ScienceOn
27 Min, K., Reiners, P.W., Nicolescu, S. and Greenwood, J.P., 2004, Age and temperature of shock metamorphism of Martian meteorite Los Angeles from (U-Th)/He thermochronometry. Geology, 32, 677-680.   DOI   ScienceOn
28 Min, K., Reiners, P.W. and Shuster, D., 2010, Single-grain (U-Th)/He ages of phosphates from St. Severin chondrite. AGU Fall Meeting, Abstract, P14C-04.
29 Cassata, W.S., Shuster, D.L., Renne, P.R., and Weiss, B.P., 2010. Evidence for shock heating and constraints on Martian surface temperatures revealed by $^{40}Ar/^{39}Ar$thermochronometry of Martian meteorites. Geochimica et Cosmochimica Acta 74, 6900-6920.   DOI   ScienceOn
30 Clayton, R.N. and Mayeda, T.K., 1996, Oxygen isotope studies of achondrites. Geochimica et Cosmochimica Acta, 60, 1999-2017.   DOI   ScienceOn
31 Farley, K.A., 2000, Helium diffusion from apatite: General behavior as illustrated by Durango fluorapatite. Journal of Geophysical Research, 105, 2903-2914.   DOI
32 Farley, K.A., Wolf, R.A. and Silver, L.T., 1996, The effects of long alpha-stopping distances on (U-Th)/He dates. Geochimica et Cosmochimica Acta, 60, 4223-4229.   DOI   ScienceOn
33 Melosh, H.J., 1993, Blasting rocks off planets. Nature, 363, 498-499.   DOI
34 Bridges, J.C., Catling, D.C., Saxton, J.M., Swindle, T.D., Lyon, I.C. and Grady, M.M., 2001, Alteration assemblages in Martian meteorites: Implications for near-surface processes. Space Science Reviews, 96, 365-392.   DOI   ScienceOn
35 Min, K., 2005, Low-temperature thermochronometry of meteorites. In Low-Temperature Thermochronology: Reviews in Mineralogy and Geochemistry (eds. P. W. Reiners and T.A. Ehlers), Mineralogical Society of America and Geochemical Society, v. 58, Chapter 21, 567-588.
36 Min, K., Farley, K.A., Renne, P.R. and Marti, K., 2003, Single grain (U-Th)/He ages from phosphates in Acapulco meteorite and implications for thermal history. Earth and Planetary Science Letters, 209, 323-336.   DOI   ScienceOn
37 Min, K., Reiners, P.W., Wolff, J.A., Mundil, R. and Winters, R.L., 2006. (U-Th)/He dating of volcanic phenocrysts with high-U-Th inclusions, Jemez Volcanic Field, New Mexico. Chemical Geology, 227, 223-235.   DOI   ScienceOn
38 Boyce, J.W., Hodges, K.V., Olszewski, W.J., Jercinovic, M.J., Carpenter, B.D. and Reiners, P.W., 2006, Laser microprobe (U-Th)/He geochronology. Geochimica et Cosmochimica Acta, 70, 3031-3039.   DOI   ScienceOn
39 Mileikowsky, C., Cucinotta, F.A., Wilson, J.W., Gladman, B., Horneck, G., Lindergren, L., Melosh, J., Rickman, H., Valtonen, M. and Zheng, J.Q., 2000, Natural transfer of viable microbes in space. Icarus, 145, 391-427.   DOI   ScienceOn
40 Bogard, D.D., Park, J. and Garrison, D., 2009, $^{39}Ar-^{40}Ar$ "ages" and origin of escess $^{40}Ar$ in Martian shergottites. Meteoritics and Planetary Science, 44, 905-923.   DOI   ScienceOn
41 Mikouchi, T., Miyamoto, M. and McKay, G.A., 1996, Mineralogy and Petrology of New Antarctic Shergottite QUE94201: A Coarse-Grained Basalt With Unusual Pyroxene Zoning. Lunar and Planetary Science, 27, 879.
42 Turner, G., Knott, S.F., Ash, R.D., and Gilmour, J.D., 1997. Ar-Ar geochronology of the Martian meteorite ALH84001: evidence for the timing of the early bombardment of Mars. Geochimica et Cosmochimica Acta, 61, 3835-3850.   DOI   ScienceOn
43 Bogard, D.D. and Park, J., 2008, $^{39}Ar-^{40}Ar$ dating of the Zagami martian shergottite and implications from magma origin of excess $^{40}Ar$. Meteoritics and Planetary Science, 43, 1113-1126.   DOI   ScienceOn
44 Weiss, B.P., Shuster, D.L. and Stewart, S.T., 2002, Temperature on Mars from $^{40}Ar/^{39}Ar$ thermochronology of ALH84001. Earth and Planetary Science Letters, 201, 465-472.   DOI   ScienceOn
45 Wiens, R.C. and Pepin, R.O., 1986, Laboratory shock emplacement of noble gases, nitrogen, and carbon dioxide into basalt, and implications for trapped gases in shergottite EETA79001. Geochimica et Cosmochimica Acta, vol, 295-307.
46 Xirouchakis, D., Draper, D.S., Schwandt, C.S. and Lanzirotti, A., 2002, Crystallization conditions of Los Angeles, a basaltic Martian meteorite. Geochimica et Cosmochimica Acta, 66, 1867-1880.   DOI   ScienceOn
47 Zeitler, P.K., Herczeg, A.L., McDougall, I. and Honda, M., 1987, U-Th-He dating of apatite: a potential thermochronometer. Geochimica et Cosmochimica Acta, 51, 2865-2868.   DOI   ScienceOn
48 Mikouchi, T. and Miyamoto, M., 2001. Dhofar 019 shergottite: Mineralogy and petrology of a new member of the basaltic Martian meteorites. Lunar and Planetary Science XXXII, 1644.
49 Treiman, A.H., McKay, G.A., Bogard, D.D., Mittlefehldt, D. W., Wang, M.-S., Keller, L., Lipschutz, M.E., Lindstrom, M.M. and Garrison, D., 1994, Comparison of the LEW88516 and ALHA77005 martian meteorites: Similar but distinct. Meteoritics 29, 581-592.   DOI
50 Tripathy, A., Monteleone, B.D., Van Soest, M.C., Hodges, K.V. and Hourigan, J.K., 2010. In situ detrital zircon (UTh)/He thermochronology. AGU Fall Meeting, V34A-05.
51 Wadhwa, M., Lentz, R.C.F., McSween, H.Y. and Crozaz, G., 2001, A Petrologic and Trace Element Study of Dar al Gani 476 and Dar al Gani 489: Twin Meteorites with Affinities to Basaltic and Lherzolitic Shergottites. Meteoritics and Planetary Science, 36, 195-208.   DOI   ScienceOn
52 Wadhwa, M., McSween, H.Y. and Crozaz, G., 1994, Petrogenesis of shergottite meteorites inferred from minor and trace element microdistributions. Geochimica et Cosmochimica Acta, 58, 4213-4229.   DOI   ScienceOn
53 Strutt, R.J., 1909, The accumulation of helium in geological time. II. Proceedings of the Royal Scociety of London. Series A 83, 96-99.   DOI
54 Bogard, D.D., Horz, F. and Johnson, P., 1986, Shockimplanted noble gases: An experimental study with implications for the origin of Martian gases in shergottite meteorites. Journal of Geophysical Research, 91, E99-E114.   DOI
55 Bogard, D.D., 1995, Impact ages of meteorites: A synthesis. Meteoritics 30, 244-268.   DOI
56 Bogard, D.D., 2009, K-Ar dating of rocks on Mars: Requirements from Martian meteorite analyses and isochron modeling. Meteoritics and Planetary Science, 44, 3-14.   DOI   ScienceOn
57 Weiss, B.P., Kirschvink, J.L., Baudenbacher, F.J., Vali, H., Peters, N.T., Macdonald, F.A. and Wikswo, J.P., 2000, A low temperature transfer of ALH84001 from Mars to earth. Science, 290, 465-472.
58 Strutt, R.J., 1908, On the accumulation of helium in geological time. Proceedings of the Royal Scociety of London, Series A 81, 272-277.   DOI
59 Strutt, R.J., 1910. The accumulation of helium in geological time. III. Proceedings of the Royal Scociety of London, Series A 83, 298-301.   DOI
60 Melosh, H.J., 1985, Ejection of rock fragments from planetary bodies. Geology, 13, 144-148.   DOI
61 Melosh, H.J., 1988, The rocky road to panspermia Nature, 332, 687-688.   DOI   ScienceOn
62 Stoffler, D., Bischoff, A., Buchwald, U. and Rubin, A.E., 1988, Shock effects in meteorites. In: Meteoritics and the Eearly Solar System (eds. J. F. Kerridge and M. S. Mathews), University of Arizona Press, Tucson. page.
63 Bogard, D.D. and Johnson, P., 1983, Martian ages in an Antarctic meteorite. Science, 221, 651-654.   DOI   ScienceOn
64 Barrat, J.A., Gillet, P., Sautter, V., Jambon, A., Javoy, M., Gopel, C., Lesourd, M., Keller, F. and Petit, E., 2002, Petrology and chemistry of the basaltic shergottite North West Africa 480. Meteoritics and Planetary Science, 37, 487-499.   DOI   ScienceOn
65 Bauer, C.A., 1947, Production of helium in meteorites by cosmic radiation. Physical Review, 72, 354-355.   DOI
66 Swindle, T.D., Caffee, M.W. and Hohenberg, C.M., 1986, Xenon and other noble gasesin shergottites. Geochimica et Cosmochimica Acta, 50, 1001-1015.   DOI   ScienceOn
67 Treiman, A.H., 1998, The history of Alan Hills 84001 revisited: Multiple shock events. Meteoritics and Planetary Science, 33, 753-764.   DOI   ScienceOn
68 Stoffler, D., Horneck, G., Sieglinde, O., Hornemann, U., Cockell, C.S., Moeller, R., Meyer, C., de Vera, J.-P., Fritz, J. and Artemieva, N., 2007, Experimental evidence for the potential impact ejection of viable microorganisms from Mars and Mars-like planets. Icarus, 186, 585-588.   DOI   ScienceOn
69 Stoffler, D., Keil, K. and Scott, E.R.D., 1991, Shock metamorphism or ordinary chondrites. Geochimica et Cosmochimica Acta, 55, 3845-3867.   DOI   ScienceOn
70 McSween, H.Y. and Treiman, A.H., 1998, Martian meteorites. In: Papike, J.J. (Ed.), Planetary Materials: Reviews in Mineralogy and Geochemistry(ed. J. J. Papike), Mineralogical Society of America, v. 36, Chapter 6.
71 Melosh, H.J., 1984, Impact ejection, spallation, and the origin of meteorites. Icarus, 59, 234-260.   DOI   ScienceOn
72 McKay, D.S., Gibson Jr. E.K., Thomas-Keprta, K.L., Vali, H., Romanek, C.S., Clemett, S.J., Chillier, X.D.F., Maechling, C.R. and Zare, R.N., 1996, Search for past like on Mars: Possible relic biogenic activity in Martian meteorite ALH84001. Science, 273, 924-930.   DOI   ScienceOn
73 NASA Compendium, http://www-curator.jsc.nasa.gov/antmet/mmc/.
74 Artemieva, N. and Ivanov, B.A., 2004, Launch of Martian meteorites in oblique impacts. Icarus, 171, 84-101.   DOI   ScienceOn
75 Ash, R.D., Knott, S.F. and Turnet, G., 1996, A 4-Gyr shock age for a Martian meteorite and implications for the cratering history of Mars. Nature, 380, 57-59.   DOI
76 Stoffler, D., Ostertag, R., Jammes, C., Pfannschmidt, G., Sen Gupta, P.R., Simon, S.B., Papike, J.J. and Beauchamp, R. H., 1986, Shock metamorphism and petrology of the shergotty achondrites Geochimica et Cosmochimica Acta, 50, 889-903.   DOI   ScienceOn
77 Stolper, E.M. and McSween, H.Y., 1979, Petrology and origin of the shergottite meteorites. Geochimica et Cosmochimica Acta, 43, 1475-1498.   DOI   ScienceOn
78 McSween, H.Y., 1985, SNC meteorites - Clues to Martian petrologic evolution? Reviews of Geophysics, 23, 391-416.   DOI
79 McSween, H.Y. and Eisenhour, D.D., 1996, QUE94201, A Noncumulate Shergottite? Lunar and Planetary Science, XXVII, 853-854.
80 Mathew, K.J. and Marti, K., 2001, Early evolution of Martian volatiles: Nitrogen and noble gas components in ALH84001 and Chassigny. Journal of Geophysical Research, 106, 1401-1422.   DOI   ScienceOn
81 Schwenzer, S.P., Fritz, J., Greshake, A., Herrmann, S., Jochum, K.P., Ott, U., Stoffler, D. and Stoll, B., 2004, Helium loss and shock pressure in Martian meteorites - A relationship (abstract). Meteoritics and Planetary Science, 39, A96.
82 Schwenzer, S.P., Herrmann, S., Mohapatra, R.K. and Ott, U., 2007, Noble gases in mineral separates from three shergottites: Shergotty, Zagami, and EETA79001. Meteoritics and Planetary Science, 42, 387-412.   DOI   ScienceOn
83 Shoemaker, E.M., Hackman, R.J. and Eggleton, R.E., 1963, Interplanetary correlation of geologic time. Advances in the Astronautical Science, 8, 70-89.
84 Shuster, D.L. and Weiss, B.P., 2005, Martian surface paleotemperatures from thermochronology of meteorites. Science, 309, 594-597.   DOI   ScienceOn
85 Arrol, W.J., Jacobi, R.B. and Paneth, F.A., 1942, Meteorites and the age of the solar system. Nature, 149, 235-238.   DOI
86 McCoy, T.J., Taylor, G.J. and Keil, K., 1992, Zagami - Product of a two-stage magmatic history. Geochimica et Cosmochimica Acta, 56, 3571-3582.   DOI   ScienceOn
87 McCoy, T.J., Keil, K. and Taylor, G.J., 1993. The dregs of crystallization in Zagami. Lunar and Planetary Science XXIV, 947-948.
88 Horneck, G., Stoffler, D., Eschweiler, U. and Hornemann, U., 2001, Bacterial spores survive simulated meteorite impact. Icarus, 149, 285-290.   DOI   ScienceOn
89 Aciego, S., Kennedy, B.M., DePaolo, D.J., Christensena, J. N. and Hutcheon, I., 2003, U-Th/He age of phenocrystic garnet from the 79 AD eruption of Mt. Vesuvius. Earth and Planetary Science Letters, 216, 209-219.   DOI   ScienceOn
90 Ahrens, T.J., Patersen, C.F. and Rosenberg, J.T., 1969, Shock compression of feldspars. Journal of Geophysical Research, 74, 2727-2746.   DOI
91 Lodders, K., 1998. A survey of SNC meteorite whole-rock compositions. Meteoritics and Planetary Science 33, A183-A190.   DOI
92 Schwenzer, S. P., Fritz, J., Stoffler, D., Trieloff, M., Amini, M., Greshake, A., Herrmann, S., Herwig, K., Jochum, K. P., Mohapatra, R.K., Stoll, B. and Ott, U., 2008, Helium loss from Martian meteorites mainly induced by shock metamorphism: Evidence from new data and a literature compilation. Meteoritics and Planetary Science, 43, 1841-1859.   DOI   ScienceOn
93 Jagoutz, E., Sorowka, A., Vogel, J.D. and Wanke, H., 1994, ALH84001: Alien or Progenitor of the SNC Family? Meteoritics, 29, 478-479.