• 제목/요약/키워드: High temperature electrolysis

검색결과 91건 처리시간 0.031초

고온 수전해에 의한 수소 제조 기술 (Hydrogen Production Technology using High Temperature Electrolysis)

  • 홍현선;추수태;윤용승
    • 한국수소및신에너지학회논문집
    • /
    • 제14권4호
    • /
    • pp.335-347
    • /
    • 2003
  • High temperature electrolysis (HTE) can become a key target technology for fulfilling the hydrogen requirement for the future hydrogen economy. This technology is based upon the partial replacement of electricity with heat energy for the electrolysis. Although the current research status of high temperature electrolysis in many countries remains at the small laboratory scale, the technology has great potential for producing hydrogen at a higher efficiency than low-temperature electrolysis (LTE). The efficiency of LTE is not expected to rise above 40%, whereas the efficiency of HTE has been reported to be above 50%. The higher efficiency of HTE would reduce costs by more than 30% compared to LTE. In this study, the technical data regarding the HTE of water and the resulting hydrogen production are reviewed, with an emphasis on the application of high temperature solid electrolyte and oxide electrodes for the HTE process.

Lab-scale 고온전기분해 수소생산시스템의 장기운전 성능평가 (Long-Term Performance of Lab-Scale High Temperature Electrolysis(HTE) System for Hydrogen Production)

  • 최미화;최진혁;이태희;유영성;고재화
    • 한국수소및신에너지학회논문집
    • /
    • 제22권5호
    • /
    • pp.641-648
    • /
    • 2011
  • KEPRI (KEPCO Research Institute) designed and operated the lab-scale high temperature electrolysis (HTE) system for hydrogen production with $10{\times}10cm^2$ 5-cell stack at $750^{\circ}C$. The electrolysis cell consists of Ni-YSZ steam/hydrogen electrode, YSZ electrolyte and LSCF based perovskite as air side electrode. The active area of one cell is 92.16 $cm^2$. The hydrogen production system was operated for 2664 hours and the performance of electrolysis stack was measured by means of current variation with from 6 A to 28 A. The maximum hydrogen production rate and current efficiency was 47.33 NL/hr and 80.90% at 28 A, respectively. As the applied current increased, hydrogen production rate, current efficiency and the degradation rate of stack were increased respectively. From the result of stack performance, optimum operation current of this system was 24 A, considering current efficiencies and cell degradations.

고온수전해용 Ni/YSZ와 Cu/YSZ 환원극의 미세구조 및 전기전도도 비교 (Comparison of Microstructure and Electrical Conductivity of Ni/YSZ and Cu/YSZ Cathode for High Temperature Electrolysis)

  • 김종민;신석재;우상국;강계명;홍현선
    • 한국재료학회지
    • /
    • 제18권7호
    • /
    • pp.384-388
    • /
    • 2008
  • Hydrogen production via high high-temperature steam electrolysis consumes less electrical energy than compared to conventional low low-temperature water electrolysis, mainly due to the improved thermodynamics and kinetics at elevated temperaturetemperatures. The elementalElemental powders of Cu, Ni, and YSZ are were used to synthesize high high-temperature electrolysis cathodecathodes, of Ni/YSZ and Cu/YSZ composites, by mechanical alloying. The metallic particles of the composites were uniformly covered with finer YSZ particles. Sub-micron sized pores are were homogeneously dispersed in the Ni/YSZ and Cu/YSZ composites. In this study, The cathode materials were synthesized and their Characterizations properties were evaluated in this study: It was found that the better electric conductivity of the Cu/YSZ composite was measured improved compared tothan that of the Ni/YSZ composite. Slight A slight increase in the resistance can be produced for in a Cu/YSZ cathode by oxidation, but it this is compensated offset for by a favorable thermal expansion coefficient. Therefore, Cu/YSZ cermet can be adequately used as a suitable cathode material of in high high-temperature electrolysis.

냉각계통 동적 예측을 위한 수전해 시스템 동적 모사 모델 (Dynamic Model of Water Electrolysis for Prediction of Dynamic Characteristics of Cooling System)

  • 윤상현;윤진원;황건용
    • 한국수소및신에너지학회논문집
    • /
    • 제32권1호
    • /
    • pp.1-10
    • /
    • 2021
  • Water electrolysis technology, which generates hydrogen using renewable energy resources, has recently attracted great attention. Especially, the polymer electrolyte membrane water electrolysis system has several advantages over other water electrolysis technologies, such as high efficiency, low operating temperature, and optimal operating point. Since research that analyzes performance characteristics using test bench have high cost and long test time, however, model based approach is very important. Therefore, in this study, a system model for water electrolysis dynamics of a polymer electrolyte membrane was developed based on MATLAB/Simulink®. The water electrolysis system developed in this study can take into account the heat and mass transfer characteristics in the cell with the load variation. In particular, the performance of the system according to the stack temperature control can be analyzed and evaluated. As a result, the developed water electrolysis system can analyze water pump dynamics and hydrogen generation according to temperature dynamics by reflecting the dynamics of temperature.

물의 전기분해에 의한 수소 제조기술과 경제성 분석 (Economic analysis of hydrogen production technology using water electrolysis)

  • 심규성;김창희;박기배
    • 한국수소및신에너지학회논문집
    • /
    • 제15권4호
    • /
    • pp.324-332
    • /
    • 2004
  • According to the rapid depletion of the fossil fuels, the electricity and hydrogen will gradually take charge of the future energy supply. Especially, in order to control the supply and demand of electricity, energy storage medium is necessary and this could be solved by the combination of water electrolysis and fuel cell. Although electricity can be generated from such alternative energies as hydropower, nuclear, solar, and wind-power resources, alternative energy storage medium is also required since regenerative energies, solar and wind-powers, are intermittent energy resources. In this regard, hydrogen production from water electrolysis was recognized as a superb method for electricity storage. In this work, the current development and economic status of alkaline, solid polymer, and high temperature electrolysis were reviewed, and then the practical use of water electrolysis technology were discussed.

고온 수전해 전해질 막의 열안정화 특성 고찰 (The thermal stabilization characteristics of electrolyte membrane in high temperature electrolysis[HTE])

  • 최호상;손효석;심규성;황갑진
    • 한국수소및신에너지학회논문집
    • /
    • 제16권2호
    • /
    • pp.150-158
    • /
    • 2005
  • Added ratio of 8YSZ powder and organic compounds (solvent, plasticizer, dispersant, binder) properly. It manufactured electrolysis membrane by wet process that make slurry and dry process that do not use organic compounds. In the case of wet process, harmony combination and method of organic compound are an importance element in slurry manufacture. This slurry did calcine at temperature of 140$^{\circ}C$ in Furnace and manufactured electrolyte disk by Dry pressing method. Like this, manufacturing disk sintered at temperature of $1300^{\circ}C,\;1400^{\circ},\;1500^{\circ}C$ in Furnace and completed electrolysis membrane. Confirmed change of crystal structure and decision form through analysis of density, SEM, XRD according to change of sintering temperature, and considered relation with ion conductivity.

고온 수증기 전해 수소제조 (Hydrogen Production through High Temperature Steam Electrolysis System)

  • 최호상
    • 멤브레인
    • /
    • 제19권1호
    • /
    • pp.1-6
    • /
    • 2009
  • 수소에너지는 풍부한 자원으로부터 얻을 수 있는 2차 청정에너지로서 연소 및 반응 생성물이 환경을 오염시키지 않을 뿐만 아니라 에너지의 수송 및 저장이 용이한 화학적 매체이다. 물의 전기분해를 이용한 수소제조는 오염을 유발시기지 않으면서도 영구적인 재생에너지 시스템으로 이용할 수 있다. 고온 수증기전해의 핵심기술은 분해된 산소 또는 프로톤 이온이 전해질을 통해 신속하게 전달될 수 있는 전해질의 개발이 제1 핵심요건이며, 이어서 전류효율에 큰 영향을 미치는 전해질막과 전극재료의 접합기술의 확보가 중요한 핵심 요소기술이다.

Long-Term Stability for Co-Electrolysis of CO2/Steam Assisted by Catalyst-Infiltrated Solid Oxide Cells

  • Jeong, Hyeon-Ye;Yoon, Kyung Joong;Lee, Jong-Ho;Chung, Yong-Chae;Hong, Jongsup
    • 한국세라믹학회지
    • /
    • 제55권1호
    • /
    • pp.50-54
    • /
    • 2018
  • This study investigated the long-term durability of catalyst(Pd or Fe)-infiltrated solid oxide cells for $CO_2$/steam co-electrolysis. Fuel-electrode supported solid oxide cells with dimensions of $5{\times}5cm^2$ were fabricated, and palladium or iron was subsequently introduced via wet infiltration (as a form of PdO or FeO solution). The metallic catalysts were employed in the fuel-electrode to promote $CO_2$ reduction via reverse water gas shift reactions. The metal-precursor particles were well-dispersed on the fuel-electrode substrate, which formed a bimetallic alloy with Ni embedded on the substrate during high-temperature reduction processes. These planar cells were tested using a mixture of $H_2O$ and $CO_2$ to measure the electrochemical and gas-production stabilities during 350 h of co-electrolysis operations. The results confirmed that compared to the Fe-infiltrated cell, the Pd-infiltrated cell had higher stabilities for both electrochemical reactions and gas-production given its resistance to carbon deposition.

고온수전해용 전극물질 개발 (Development of prepareation technology of materials for high temperature electrolysis)

  • 서민혜;홍현선;강경훈;김종민;이성규;윤용승
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2007년도 춘계학술대회
    • /
    • pp.61-64
    • /
    • 2007
  • Ni/YSZ ($Y_{2}O_{3}-stabilized$ $ZrO_{2}$), Cu/YSZ and CuO/YSZ composite powder for a cathode material in high temperature electrolysis (HTE) was synthesized by a mechanical alloying method with Ni (or Cu, CuO, Co) and YSZ powder. Microstructure of the composite for HTE reaction has been analyzed with various techniques of XRD, SEM to investigate effects of fabrication conditions. And conductivity of electrode was measured, Cu/YSZ cermet showed the higher electrical conductivity value than Ni/YSZ.

  • PDF

고온수전해 수소극용 Cu/YSZ 복합체의 제조 및 미세구조 (Synthesis and Microstructure of Cu/VSZ Composite for High Temperature Electrolysis Cathode)

  • 김종민;정항철;강안수;홍현선
    • 한국수소및신에너지학회논문집
    • /
    • 제18권3호
    • /
    • pp.238-243
    • /
    • 2007
  • The composite powder of Cu and YSZ was synthesized for a high temperature electrolysis cathode by mechanical milling. The average Cu particle size was reduced to 5 micro-meter from 48 micro-meter after the mechanical ball milling. The composite powder showed that Cu particles were uniformly covered with finer YSZ particles. Sub-micron sized pores were uniformly dispersed in the Cu/YSZ composit. Homogeneously-dispersed fine YSZ in the composite is expected to the increase in triple phase boundaries, thereby leading the enhanced performance of cathode.