• Title/Summary/Keyword: High temperature deformation behavior

Search Result 293, Processing Time 0.024 seconds

Extrusion Behavior and Finite Element Analysis of Rapidly Solidified Al-Si-Fe Alloys (급속응고 Al-Si-Fe 합금의 압출거동 및 유한요소 해석)

  • 정기승
    • Journal of Powder Materials
    • /
    • v.6 no.1
    • /
    • pp.56-61
    • /
    • 1999
  • The plastic deformation behaviors for powder extrusion of rapidly soildified Al-Si-Fe alloys at high temperature were investigated. During extrusion of Al-Si-Fe alloys, primary Si and intermetallic compound in matrix are broken finely. Additionally, during extrusion metastable $\delta$ phase($Al_4SiFe_2$) intermetallic compound disappears and the equilibrium $\beta$ phase($Al_5FeSi_2$) is formed. In gereral, it was diffcult to establish optimum process variables for extrusion condition through experimentation, because this was costly and time-consuming. In this paper, in order to overcome these problems, we compared the experimental results to the finite element analysis for extrusion behaviors of rapidly solidified Al-Si-Fe alloys. This ingormation is expected to assist in improving rapidly solidified Al-Si alloys extrusion operations.

  • PDF

Rate-Dependence of Off-Axis Tensile Behavior of Cross-Ply CFRP Laminates at Elevated Temperature and Its Simulation

  • Takeuchi, Fumi;Kawai, Masamichi;Zhang, Jian-Qi;Matsuda, Tetsuya
    • Advanced Composite Materials
    • /
    • v.17 no.1
    • /
    • pp.57-73
    • /
    • 2008
  • The present paper focuses on experimental verification of the ply-by-ply basis inelastic analysis of multidirectional laminates. First of all, rate dependence of the tensile behavior of balanced symmetric cross-ply T800H/epoxy laminates with a $[0/90]_{3S}$ lay-up under off-axis loading conditions at $100^{\circ}C$ is examined. Uniaxial tension tests are performed on plain coupon specimens with various fiber orientations $[{\theta}/(90-{\theta})]_{3S}$ ($\theta$ = 0, 5, 15, 45 and $90^{\circ}C$) at two different strain rates (1.0 and 0.01%/min). The off-axis stress.strain curves exhibit marked nonlinearity for all the off-axis fiber orientations except for the on-axis fiber orientations $\theta$ = 0 and $90^{\circ}$, regardless of the strain rates. Strain rate has significant influences not only on the off-axis flow stress in the regime of nonlinear response but also on the apparent off-axis elastic modulus in the regime of initial linear response. A macromechanical constitutive model based on a ply viscoplasticity model and the classical laminated plate theory is applied to predictions of the rate-dependent off-axis nonlinear behavior of the cross-ply CFRP laminate. The material constants involved by the ply viscoplasticity model are identified on the basis of the experimental results on the unidirectional laminate of the same carbon/epoxy system. It is demonstrated that good agreements between the predicted and observed results are obtained by taking account of the fiber rotation induced by deformation as well as the rate dependence of the initial Young's moduli.

Evaluation of the Bonding Behavior of the Rehabilitation Method Applying Carbon Fiber Subjected to the Variation of Environmental Condition (탄소섬유 접착 보강공법의 환경변화에 따른 부착특성 평가)

  • Han, Cheon Goo;Byun, Hang Yong;Park, Yong Kyu
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.12 no.2
    • /
    • pp.67-74
    • /
    • 2008
  • This paper provides the test results of bonding behavior of the interface between concrete substrate and carbon fiber in the rehabilitation method applying carbon fiber with epoxy based resin adhesive. The difference in each components was gradually increased subjected to the repetition of temperature variation, regardless of the strength of the substrate concrete, while the ultrasonic interface between each component occurred. An increase in difference of the temperature resulted in a decrease in bond strength of each component. Associated failure mode was shown to be interfacial failure and substrate concrete failure. No remarkable changes were found in the deformation and ultrasonic velocity of each component until the four cycles of the dry and moisture test. Hence, the moisture condition may not affect the bonding behavior of each component. After the repetition of dry and moisture test, corresponding bond strength was reduced to 40% of that before test. For the effect of freeze and thaw test, the cycle of freeze and thaw within 4 cycles resulted in debonding of each component.

Thermo-mechanical Deformation Analysis of Filu Chip PBGA Packages Subjected to Temperature Change (Flip Chip PBGA 패키지의 온도변화에 대한 변형거동 해석)

  • Joo, Jin-Won;Kim, Do-Hyung
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.13 no.4
    • /
    • pp.17-25
    • /
    • 2006
  • Thermo-mechanical behavior of flip-chip plastic ball grid array (FC-PBGA) packages are characterized by high sensitive $moir\'{e}$ interferometry. $Moir\'{e}$ fringe patterns are recorded and analyzed for several temperatures. Deformation analysis of bending displacements of the packages and average strains in the solder balls for both single and double-sided package assemblies are presented. The bending displacement of the double-sided package assembly is smaller than that of the single-sided one because of its symmetric structure. The largest effective strain occurred at the solder ball located on the edge of the chip and its magnitude of the double-sided package assembly is greater than that of single-sided one by 50%.

  • PDF

Reliability Estimation and Dynamic Deformation of Polymeric Material Using SHPB Technique and Probability Theory (SHPB 기법과 확률이론을 이용한 고분자재료의 동적거동특성 및 건전성 평가)

  • Lee, Ouk-Sub;Kim, Dong-Hyeok
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.32 no.9
    • /
    • pp.740-753
    • /
    • 2008
  • The conventional Split Hopkinson Pressure Bar (C-SHPB) technique with aluminum pressure bars to achieve a closer impedance match between the pressure bars and the specimen materials such as hot temperature degraded POM (Poly Oxy Methylene) and PP (Poly Propylene) to obtain more distinguishable experimental signals is used to obtain a dynamic behavior of material deformation under a high strain rate loading condition. An experimental modification with Pulse shaper is introduced to reduce the nonequilibrium on the dynamic material response during a short test period to increase the rise time of the incident pulse for two polymeric materials. For the dynamic stress strain curve obtained from SHPB experiment under high strain rate, the Johnson-Cook model is applied as a constitutive equation, and we verify the applicability of this constitutive equation to the probabilistic reliability estimation method. The methodology to estimate the reliability using the probabilistic method such as the FORM and the SORM has been proposed, after compose the limit state function using Johnson-Cook model. It is found that the failure probability estimated by using the SORM is more reliable than those of the FORM, and the failure probability increases with the increase of applied stress. Moreover, it is noted that the parameters of Johnson-Cook model such as A and n, and applied stress affect the failure probability more than the other random variables according to the sensitivity analysis.

Size-dependent strain rate sensitivity in structural steel investigated using continuous stiffness measurement nanoindentation

  • Ngoc-Vinh Nguyen;Chao Chang; Seung-Eock Kim
    • Steel and Composite Structures
    • /
    • v.47 no.3
    • /
    • pp.355-363
    • /
    • 2023
  • The main purpose of this study is to characterize the size-dependent strain rate sensitivity in structural steel using the continue stiffness measurement (CSM) indentation. A series of experiments, such as CSM indentation and optical microscope examination, has been performed at the room temperature at different rate conditions. The results indicated that indentation hardness, strain rate, and flow stress showed size-dependent behavior. The dependency of indentation hardness, strain rate, and flow stress on the indentation size was attributed to the transition of the dislocation nucleation rate and the dislocation behaviors during the indentation process. Since both hardness and strain rate showed the size-dependent behavior, SRS tended to depend on the indentation depth. The results indicated that the SRS was quite high over 2.0 at the indentation depth of 240 nm and quickly dropping to 0.08, finally around 0.046 at large indents. The SRS values at large indentations strongly agree with the general range reported for several types of low-carbon steel in the literature (Chatfield and Rote 1974, Nguyen et al. 2018b, Luecke et al. 2005). The results from the present study can be used in both static and dynamic analyses of structures as well as to assess and understand the deformation mechanism and the stress-state of material underneath the indenter tip during the process of the indentation testing.

Evaluation of Material Properties in Austenite Stainless Steel Sheet with Scanning Acoustic Microscopy (초음파현미경을 이용한 오스테나이트 스테인레스강의 재료특성 평가)

  • Park, Tae-Sung;Kasuga, Yukio;Park, Ik-Keun;Kim, Kyoung-Suk;Miyasaka, Chiaki
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.21 no.2
    • /
    • pp.267-275
    • /
    • 2012
  • Austenite stainless steel 304 has properties of high resistance to corrosion and temperature changes. Therefore, this material is widely used in various of industries. However, when the material is subjected to heating and cooling cycles the forming accuracy, for example, the right angle associated with a sharp bend such as corner is lost. This phenomenon is caused by the reversion of the deformation-induced martensite into austenite when the temperature in increased. This result in misfit of a structure or an assembly, and an increase in residual stress. Hence, it is important to understand this process. In this study, to evaluate the mechanical behavior of the deformation-induced martensite and reversed austenite, a scanning acoustic spectroscope including the capability of obtaining both phase and amplitude of the ultrasonic wave (i.e., the complex V(z) curve method) was used. Then, the velocities of the SAW propagating within the specimens made in different conditions were measured. The experimental differences of the SAW velocities obtained in this experiment were ranging from 2,750 m/s to 2,850 m/s, and the theoretical difference was 3.6% under the assumption that the SAW velocity was 2,800 m/s. The error became smaller as the martensite content was increased. Therefore, the SAW velocity may be a probe to estimate the marternsite content.

Analytical post-heating behavior of concrete-filled steel tubular columns containing tire rubber

  • Karimi, Amirhossein;Nematzadeh, Mahdi;Mohammad-Ebrahimzadeh-Sepasgozar, Saleh
    • Computers and Concrete
    • /
    • v.26 no.6
    • /
    • pp.467-482
    • /
    • 2020
  • This research focused on analyzing the post-fire behavior of high-performance concrete-filled steel tube (CFST) columns, with the concrete containing tire rubber and steel fibers, under axial compressive loading. The finite element (FE) modeling of such heated columns containing recycled aggregate is a branch of this field which has not received the proper attention of researchers. Better understanding the post-fire behavior of these columns by measuring their residual strength and deformation is critical for achieving the minimum repair level required for structures damaged in the fire. Therefore, to develop this model, 19 groups of confined and unconfined specimens with the variables including the volume ratio of steel fibers, tire rubber content, diameter-to-thickness (D/t) ratio of the steel tube, and exposure temperature were considered. The ABAQUS software was employed to model the tested specimens so that the accurate behavior of the FE-modeled specimens could be examined under test conditions. To achieve desirable results for the modeling of the specimens, in addition to the novel procedure described in this research, the modified versions of models presented by previous researchers were also utilized. After the completion of modeling, the load-axial strain and load-lateral strain relationships, ultimate strength, and failure mode of the modeled CFST specimens were evaluated against the test data, through which the satisfactory accuracy of this modeling procedure was established. Afterward, using a parametric study, the effect of factors such as the concrete core strength at different temperatures and the D/t ratio on the behavior of the CFST columns was explored. Finally, the compressive strength values obtained from the FE model were compared with the corresponding values predicted by various codes, the results of which indicated that most codes were conservative in terms of these predictions.

Investigation of Factors for Promoting Densification of the Sintered Compact during Pressurized Sintering of the Amorphous Ti5Si3 MA Powder (비정질상인 Ti5Si3 MA분말의 가압소결 동안 소결체의 치밀화 촉진현상 요인에 대한 조사)

  • Han, Chang-Suk;Jin, Sung-Yooun;Kwon, Hyuk-Ku
    • Korean Journal of Materials Research
    • /
    • v.30 no.6
    • /
    • pp.301-307
    • /
    • 2020
  • In this study, factors considered to be causes of promotion of densification of sintered pellets identified during phase change are reviewed. As a result, conclusions shown below are obtained for each factor. In order for MA powder to soften, a temperature of 1,000 K or higher is required. In order to confirm the temporary increase in density throughout the sintered pellet, the temperature rise due to heat during phase change was found not to have a significant effect. While examining the thermal expansion using the compressed powder, which stopped densification at a temperature below the MA powder itself, and the phase change temperature, no shrinkage phenomenon contributing to the promotion of densification is observed. The two types of powder made of Ti-silicide through heat treatment are densified only in the high temperature region of 1,000 K or more; it can be estimated that this is the effect of fine grain superplasticity. In the densification of the amorphous powder, the dependence of sintering pressure and the rate of temperature increase are shown. It is thought that the specific densification behavior identified during the phase change of the Ti-37.5 mol.%Si composition MA powder reviewed in this study is the result of the acceleration of the powder deformation by the phase change from non-equilibrium phase to equilibrium phase.

A New process for the Solid phase Crystallization of a-Si by the thin film heaters (박막히터를 사용한 비정질 실리콘의 고상결정화)

  • 김병동;정인영;송남규;주승기
    • Journal of the Korean Vacuum Society
    • /
    • v.12 no.3
    • /
    • pp.168-173
    • /
    • 2003
  • Recently, according to the rapid progress in Flat-panel-display industry, there has been a growing interest in the poly-Si process. Compared with a-Si, poly-Si offers significantly high carrier mobility, so it has many advantages to high response rate in Thin Film Transistors (TFT's). We have investigated a new process for the high temperature Solid Phase Crystallization (SPC) of a-Si films without any damages on glass substrates using thin film heater. because the thin film heater annealing method is a very rapid thermal process, it has very low thermal budget compared to the conventional furnace annealing. therefore it has some characteristics such as selective area crystallization, high temperature annealing using glass substrates. A 500 $\AA$-thick a-Si film was crystallized by the heat transferred from the resistively heated thin film heaters through $SiO_2$ intermediate layer. a 1000 $\AA$-thick $TiSi_2$ thin film confined to have 15 $\textrm{mm}^{-1}$ length and various line width from 200 to 400 $\mu\textrm{m}$ was used as the thin film heater. By this method, we successfully crystallized 500 $\AA$-thick a-Si thin films at a high temperature estimated above $850^{\circ}C$ in a few seconds without any thermal deformation of g1ass substrates. These surprising results were due to the very small thermal budget of the thin film heaters and rapid thermal behavior such as fast heating and cooling. Moreover, we investigated the time dependency of the SPC of a-Si films by observing the crystallization phenomena at every 20 seconds during annealing process. We suggests the individual managements of nucleation and grain growth steps of poly-Si in SPC of a-Si with the precise control of annealing temperature. In conclusion, we show the SPC of a-Si by the thin film heaters and many advantages of the thin film heater annealing over other processes