Acknowledgement
This research has been done under the research project QG.22.25 [Experimental study on the dynamic behavior of microstructural phases in the weld zone under low-cycle fatigue using nanoindentation technology] of Vietnam Nation University, Hanoi.
References
- Alkorta, J., Martinez-Esnaola, J.M. and Sevillano, J.G. (2008), "Critical examination of strain-rate sensitivity measurement by nanoindentation methods: Application to severely deformed niobium", Acta Mater., 56, 884-893. https://doi.org/10.1016/j.actamat.2007.10.039.
- Antunes, J.M., Fernandes, J.V., Menezes, L.F. and Chaparro, B.M. (2007), "A new approach for reverse analyses in depth-sensing indentation using numerical simulation", Acta Mater., 55, 69-81. https://doi.org/10.1016/j.actamat.2006.08.019.
- Arthur, E.K., Ampaw, E., Kana, M.G.Z., Akinluwade, K.J., Adetunji, A.R., Adewoye, O.O. and Soboyejo W.O. (2015), "Indentation size effects in pack carbo-nitrided AISI 8620 steels", Mater. Sci. Eng. A, 644, 347-357. https://doi.org/10.1016/j.msea.2015.07.040.
- ASTM E2546-07 (2007), Standard Practice for Instrumented Indentation Testing, ASTM International, West Conshohocken, PA. https://doi.org/10.1520/E2546-15.
- ASTM, E3-01 (2007), Standard Guide for Preparation of Metallographic Specimens, ASTM International.
- Bridge, R.Q., Sukkar, T., Hayward, I.G. and Van Ommen, M. (2001), "Behaviour and design of structural steel pins", Steel Compos. Struct., 1(1), 97-110. https://doi.org/10.12989/scs.2001.1.1.097.
- Brnic, J., Canadija, M., Turkalj, G., Krscanski, S., Lanc, D., Brcic, M. and Gao Z. (2016), "Short-Time creep, fatigue and mechanical properties of 42CrMo4 - Low alloy structural steel", Steel Compos. Struct., 22(4), 875-888. https://doi.org/10.12989/scs.2016.22.4.875.
- Cai, Y. and Young, B. (2019), "Experimental investigation of carbon steel and stainless steel bolted connections at different strain rates", Steel Compos. Struct., 30(6), 551-565. https://doi.org/10.12989/scs.2019.30.6.551.
- Cao, Y.P. and Lu, J. (2004), "A new method to extract the plastic properties of metal materials from an instrumented spherical indentation loading curve", Acta Mater., 52, 4023-4032. https://doi.org/10.1016/j.actamat.2004.05.018.
- Chatfield, D.A. and Rote, R.R. (1974), "Strain rate effects on properties of high strength, low alloys steels", Soc. Automot. Eng., 740177, 1-12. https://doi.org/10.4271/740177
- Chen, J., Shen, Y., Liu, W., Beake, B.D., Shi, X., Wang, Z., Zhang, Y. and Guo, X. (2016), "Effects of loading rate on development of pile-up during indentation creep of polycrystalline copper", Mater. Sci. Eng. A, 656, 216-221. https://doi.org/10.1016/j.msea.2016.01.042.
- Chen, X.H., Chen, X. and Chen, H. (2018), "Influence of stress level on uniaxial ratcheting effect and ratcheting strain rate in austenitic stainless steel Z2CND18.12N", Steel Compos. Struct., 27(1), 89-94. https://doi.org/10.12989/scs.2018.27.1.089.
- Cheng, G.M., Jian, W.W., Xu, W.Z., Yuan, H., Millett, P.C. and Zhu, Y.T. (2013), "Grain size effect on deformation mechanisms of nanocrystalline bcc metals", Mater. Res. Lett., 1(1), 26-31. https://doi.org/10.1080/21663831.2012.739580.
- Chinh, N.Q., Gubicza, J., Kovacs, Z. and Lendvai, J. (2004), "Depth-sensing indentation tests in studying plastic instabilities", J. Mater. Res., 19(1), 31-45. https://doi.org/10.1557/jmr.2004.19.1.31.
- Chinh, N.Q., Horvath, G., Kovacs, Z. and Lendvai, J. (2002), "Characterization of plastic instability steps occurring in depth-sensing indentation tests", Mater. Sci. Eng. A, 324, 219-224. https://doi.org/10.1016/S0921-5093(01)01315-6.
- Choi, I.C., Kim, Y.J., Wang, Y.M., Ramamurty, U. and Jang, J. Il (2013), "Nanoindentation behavior of nanotwinned Cu: Influence of indenter angle on hardness, strain rate sensitivity and activation volume", Acta Mater., 61, 7313-7323. https://doi.org/10.1016/j.actamat.2013.08.037.
- Dao, M., Chollacoop, N., Van Vliet, K.J., Venkatesh, T.A. and Suresh, S. (2001), "Computational modeling of the forward and reverse problems in instrumented sharp indentation", Acta Mater., 49, 3899-3918. https://doi.org/10.1016/S1359-6454(01)00295-6.
- Davies, R.G. and Magee, C.L. (1975), "The effect of strain-rate upon the tensile deformation of materials", J. Eng. Mater. Technol., 97, 151-155. https://doi.org/10.1115/1.3443275
- Durst, K., Backes, B. and Goken, M. (2005), "Indentation size effect in metallic materials: Correcting for the size of the plastic zone", Scr. Mater., 52, 1093-1097. https://doi.org/10.1016/j.scriptamat.2005.02.009.
- Faghihi, D. and Voyiadjis, G.Z. (2012), "Determination of nanoindentation size effects and variable material intrinsic length scale for body-centered cubic metals", Mech. Mater., 44, 189-211. https://doi.org/10.1016/j.mechmat.2011.07.002.
- Fisher-Cripps, A.C. (2011), Nanoindentation, Springer, 2087 Killarney Heights, New South Wales Australia. https://doi.org/10.1201/b12116.
- Gao, C. and Liu, M. (2017), "Instrumented indentation of fused silica by Berkovich indenter", J. Non. Cryst. Solids, 475, 151-160. https://doi.org/10.1016/j.jnoncrysol.2017.09.006
- Gao, X., Ma, Z.S., Jiang, W.J., Zhang, P.P., Wang, Y., Pan, Y. and Lu, C.S. (2016), "Stress-strain relationships of LixSn alloys for lithium ion batteries", J. Power Sources., 311, 21-28. https://doi.org/10.1016/j.jpowsour.2016.02.024.
- Giannakopoulos, A.E. and Suresh, S. (1999), "Determination of elastoplastic properties by instrumented sharp indentation", Scr. Mater., 40, 1191-1198. https://doi.org/10.1016/S1359-6462(99)00011-1
- Greer, J.R. and Nix, W.D. (2006), "Nanoscale gold pillars strengthened through dislocation starvation", Phys. Rev. B, 73, 245410. https://doi.org/10.1103/PhysRevB.73.245410.
- Hainsworth, S.V., Chandler, H.W. and Page, T.F. (1996), "Analysis of nanoindentation load-displacement loading curves", J. Mater. Res., 11 (8), 1987-1995. https://doi.org/10.1557/JMR.1996.0250
- Hakim, S.J.S. and Abdul Razak, H. (2013), "Structural damage detection of steel bridge girder using artificial neural networks and finite element models", Steel Compos. Struct., 14, 367-377. https://doi.org/10.12989/scs.2013.14.4.367.
- Hu, J., Sun, W., Jiang, Z., Zhang, W., Lu, J. and Huo, W. (2017), "Indentation size effect on hardness in the body-centered cubic coarse- grained and nanocrystalline tantalum", Mater. Sci. Eng. A, 686, 19-25. https://doi.org/10.1016/j.msea.2017.01.033.
- Hutchings, I.M. (2009), "The contributions of David Tabor to the science of indentation hardness", J. Mater. Res., 24(3), 581-589. https://doi.org/10.1557/jmr.2009.0085.
- Kasada, R., Ishii, D., Ando, M., Tanigawa, H., Ohata, M. and Konishi, S. (2015), "Dynamic tensile properties of reduced-activation ferritic steel F82H", Fusion Eng. Des., 100, 146-151. https://doi.org/10.1016/j.fusengdes.2015.05.001.
- Kim, J.J., Pham, T.H. and Kim, S.E. (2015), "Instrumented indentation testing and FE analysis for investigation of mechanical properties in structural steel weld zone", Int. J. Mech. Sci., 103, 265-274. https://doi.org/10.1016/j.ijmecsci.2015.09.015.
- Langseth, M.U.S., Lindholm, P.K. and Larsen, B.L. (1991), "Strain rate sensitivity of mild steel grade ST-52-3N", J. Eng. Mech., 117, 719-731. https://doi.org/10.1061/(ASCE)0733-9399(1991)117:4(719).
- Liu, Y., Hay, J., Wang, H. and Zhang, X. (2014), "A new method for reliable determination of strain-rate sensitivity of low-dimensional metallic materials by using nanoindentation", Scr. Mater., 77, 5-8. https://doi.org/10.1016/j.scriptamat.2013.12.022.
- Liu, Y.C., Teo, J.W.R., Tung, S.K. and Lam, K.H. (2008), "High-temperature creep and hardness of eutectic 80Au/20Sn solder", J. Alloys Compd., 448, 340-343. https://doi.org/10.1016/j.jallcom.2006.12.142.
- Ma, Z.S., Zhou, Y.C., Long, S.G. and Lu, C.S. (2012), "An inverse approach for extracting elastic-plastic properties of thin films from small scale sharp indentation", J. Mater. Sci. Technol., 28, 626-635. https://doi.org/10.1016/S1005-0302(12)60108-X.
- Ma, Z.S., Long, S.G., Pan, Y. and Zhou, Y.C. (2008), "Loading rate sensitivity of nanoindentation creep in polycrystalline Ni films", J. Mater. Sci., 43, 5952-5955. https://doi.org/10.1007/s10853-008-2838-0.
- Ma, Y., Ye, G. and Hu, J. (2017), "Micro-mechanical properties of alkali-activated fly ash evaluated by nanoindentation", Constr. Build. Mater., 147, 407-416. https://doi.org/10.1016/j.conbuildmat.2017.04.176.
- Manjoine, M.J. (1944), "Influence of rate of strain and temperature on yield stresses of mild steel", J. Appl. Mech., 11, A211-A218. https://doi.org/10.1115/1.4009394
- Nagarajarao, N., Lohrmann, M. and Tall, L. (1966), "Effect of strain rate on the yield stress of structural steel", 1(1), 1-49.
- Nazeer, M.M., Khan, M.A. and Haq, A.U. (2003), "Optimal response of conical tool semi angle in ductile metal sheets indentation and its governing mechanics", Struct. Eng. Mech., 16(1), 47-62. https://doi.org/10.12989/sem.2003.16.1.047.
- Nguyen, N.V., Kim, J.J. and Kim, S.E. (2018a), "Methodology to extract constitutive equation at a strain rate level from indentation curves", Int. J. Mech. Sci., 152, 363-377. https://doi.org/10.1016/J.IJMECSCI.2018.12.023.
- Nguyen, N.V., Pham, T.H. and Kim, S.E. (2019a), "Strain rate sensitivity behavior of a structural steel during low-cycle fatigue investigated using indentation", Mater. Sci. Eng. A, 744, 490-499. https://doi.org/10.1016/j.msea.2018.12.025.
- Nguyen, N.V., Pham, T.H. and Kim, S.E. (2019b), "Microstructure and strain rate sensitivity behavior of SM490 structural steel weld zone investigated using indentation", Constr. Build. Mater., 206, 410-418. https://doi.org/10.1016/j.msea.2018.12.025.
- Nguyen, N.V., Pham, T.H. and Kim, S.E. (2018b), "Characterization of strain rate effects on the plastic properties of structural steel using nanoindentation", Constr. Build. Mater., 163, 305-314. https://doi.org/10.1016/j.conbuildmat.2017.12.122.
- Nix, W.D. and Gao, H.J. (1998), "Indentation size effects in crystalline materials: A law for strain gradient plasticity", J. Mech. Phys. Solids, 46, 411-425. https://doi.org/10.1016/s0022-5096(97)00086-0.
- Oliver, W.C. and Phar, G.M. (1992), "An improved technique for determining hardness and elastic-modulus using load and displacement sensing indentation experiments", J. Mater. Res., 7(6), 1564-1583. https://doi.org/10.1557/JMR.1992.1564.
- Orowan, E. (1940), "Problems of plastic gliding", Proc. Phys. Soc., 52(8), 9-22. https://doi.org/10.1088/0959-5309/52/1/303
- Pham, T.H., Kim, J.J. and Kim, S.E. (2015), "Estimating constitutive equation of structural steel using indentation", Int. J. Mech. Sci., 90, 151-161. https://doi.org/10.1016/j.ijmecsci.2014.11.007.
- Rodriguez, R. and Gutierrez, I. (2003), "Correlation between nanoindentation and tensile properties influence of the indentation size effect", Mater. Sci. Eng. A, 361, 377-384. https://doi.org/10.1016/S0921-5093(03)00563-X.
- Sathish Gandhi, V.C., Kumaravelan, R. and Ramesh, S. (2014), "Performance analysis of spherical indentation process during loading and unloading - A contact mechanics approach", Struct. Eng. Mech., 52(3), 469-483. https://doi.org/10.12989/sem.2014.52.3.469.
- Shankar, S., Loganathan, P. and Mertens, A.J. (2015), "Analysis of pile-up/sink-in during spherical indentation for various strain hardening levels", Struct. Eng. Mech., 53(3), 429-442. https://doi.org/10.12989/sem.2015.53.3.429.
- Tabor (1951), The Hardness of Metals, Oxford at the Clarendon press, Amen House, London E.G.4.
- Luecke, W.E. (2005), Mechanical Properties of Structural Steels, National Institude of Standards and Technology, Washington.
- Wei, Q. (2007), "Strain rate effects in the ultrafine grain and nanocrystalline regimes-influence on some constitutive responses", J. Mater. Sci., 42, 1709-1727. https://doi.org/10.1007/s10853-006-0700-9.
- Yang, B. and Vehoff, H. (2007), "Dependence of nanohardness upon indentation size and grain size - A local examination of the interaction between dislocations and grain boundaries", Acta Mater., 55, 849-856. https://doi.org/10.1016/j.actamat.2006.09.004.
- Zhao, J., Wang, F., Huang, P., Lu, T.J. and Xu, K.W. (2014), "Depth dependent strain rate sensitivity and inverse indentation size effect of hardness in body-centered cubic nanocrystalline metals", Mater. Sci. Eng. A, 615, 87-91. https://doi.org/10.1016/j.msea.2014.07.057.
- Zhu, X. and Liu, W. (2018), "The rock fragmentation mechanism and plastic energy dissipation analysis of rock indentation", Geomech. Eng., 16(2), 195-204. https://doi.org/10.12989/GAE.2018.16.2.195