• Title/Summary/Keyword: High temperature cooling

Search Result 1,546, Processing Time 0.035 seconds

A study on the analysis of heat flow in X-ray tube (X-ray tube 내 열유동 해석에 관한 연구)

  • Yun, Dong-Min;Seo, Byung-Suk;Jeon, Yong-Han
    • Design & Manufacturing
    • /
    • v.15 no.1
    • /
    • pp.26-31
    • /
    • 2021
  • As the aging ages, the disease also increases, and the development of AI technology and X-ray equipment used to treat patients' diseases is also progressing a lot. X-ray tube converts only 1% of electron energy into X-ray and 99% into thermal energy. Therefore, when the cooling time of the anode and the X-ray tube are frequently used in large hospitals, the amount of X-ray emission increases due to temperature rise, the image quality deteriorates due to the difference in X-ray dose, and the lifespan of the overheated X-ray tube may be shortened. Therefore, in this study, temperature rise and cooling time of 60kW, 75kW, and 90kW of X-ray tube anode input power were studied. In the X-ray Tube One shot 0.1s, the section where the temperature rises fastest is 0.03s from 0s, and it is judged that the temperature has risen by more than 50%. The section in which the temperature drop changes most rapidly at 20 seconds of cooling time for the X-ray tube is 0.1 seconds to 0.2 seconds, and it is judged that a high temperature drop of about 65% or more has occurred. After 20 seconds of cooling time from 0 seconds to 0.1 seconds of the X-ray tube, the temperature is expected to rise by more than 3.7% from the beginning. In particular, since 90kW can be damaged by thermal shock at high temperatures, it is necessary to increase the surface area of the anode or to require an efficient cooling system.

The Experimental Study on Mist Cooling Heat Transfer (초음파진동을 이용한 미세분무냉각 열전달에 관한 실험적 연구)

  • Kim, Yeung-Chan
    • Journal of ILASS-Korea
    • /
    • v.15 no.4
    • /
    • pp.202-207
    • /
    • 2010
  • Mist cooling is widely employed as a cooling technique of high temperature surfaces, and it has heat transfer characteristics similar to boiling heat transfer which has the convection, nucleate and film boiling regions. In the present study, mist cooling heat transfer was experimentally investigated for the mist flow impacting on the heated surfaces of mico-fins. The mist flow was generated by supersonic vibration. Experiments were conducted under the test conditions of droplet flow rate, $Q=6.02{\times}10^{-9}{\sim}3.47{\times}10^{-8}\;m^3/s$ and liquid temperature, $T_f=30{\sim}35^{\circ}C$. From the experimental results, it is found that an increase in the droplet flow rate improves mist cooling heat transfer in the both case of smooth surface and surfaces of micro-fins. Micro-fins surfaces enhance the mist cooling heat transfer. Besides, the experimental results show that an increase in the droplet flow rate decrease the heat transfer efficiency of mist cooling.

A study on thermal fluid analysis in X-ray tube for non-fire alarm (비화재보를 위한 X-ray tube 내 열 유동해석에 관한 연구)

  • Yun, Dong-Min;Jeon, Yong-Han
    • Design & Manufacturing
    • /
    • v.16 no.2
    • /
    • pp.33-38
    • /
    • 2022
  • Currently, Korea is an aging society, and it is expected to enter a super-aging society in about 4 years. Accordingly, many X-ray technologies are being developed. In X-rays, 99% of X-rays are converted into heat energy and 1% into light energy (X-rays). 99% of the thermal energy raises the temperature of the anode and its surroundings, and the cooling system is an important factor as overheating can affect the deterioration of X-ray quality and shortened lifespan. There is a method of forced air cooling using natural convection. Therefore, in this study, when X-rays were taken 5 times, Flow analysis was performed on heat removal according to temperature rise and cooling time for the heat generated at the anode of the X-ray tube (input power 60kW, 75kW, 90kW). Based on one-shot, the most rapid temperature rise section increased by more than 57% to 0.03 seconds, A constant temperature rises from 0.03 seconds to 0.1 seconds, It is judged that the temperature rises by about 8.2% or more at one time. After one-shot cooling, the cooling drops sharply from about 60% to 0.03 seconds, It is judged that the temperature has cooled by more than 86% compared to the temperature before shooting. One-shot is cooled by more than 86% with cooling time after 0.1 seconds, As the input power of the anode increases, the cooling temperature gradually increases. Since the tungsten of the anode target inside the X-ray tube may be damaged by thermal shock caused by a rapid temperature rise, an improvement method for removing thermal energy is required when using a high-input power supply.

A Study of a Conduction Cooling System of a HTS SMES System (고온초전도체 SMES 장치의 전도냉각시스템 연구)

  • Koh, Deuk-Yong;Lee, Kwan-Soo
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.19 no.4
    • /
    • pp.328-332
    • /
    • 2007
  • A superconducting magnetic energy storage (SMES) system has shorter response time and longer life time, and is more economical, and environment-friendly than other uninterruptible power supply (UPS). A conduction cooling system is well answer for the high temperature superconductor (HTS) SMES system. Because the conduction cooling system is simple, light and small structure. The purpose of this paper is to design and verify the effective conduction cooling system for the HTS SMES system. The analysis of heat loads in cryostat is performed. Thermal shield heat loads, temperatures of HTS coil surface and conduction Cu plate are estimated and measured.

Effect of Precooling on Removal of Field Heat and Respiration Rate of Vegetable Corn(Zes Mays L.) (예냉처리가 풋옥수수의 냉각속도 및 호흡량 변화에 미치는 영향)

  • 손영구;김성열
    • Food Science and Preservation
    • /
    • v.3 no.1
    • /
    • pp.55-60
    • /
    • 1996
  • To obtain the basic data on precooling effects for establishment the suitable postharvest handling technique or method of keeping high quality of vegetalble corn, the sweet, supersweet and waxy corn, (Danok #2, Cocktail #86 and Chalok #1), being mainly consumed as vegetables in Korea, were precooled with ice or vacuum cooling method immediately after harvest. The vacuum cooling was the most effective for the field heat removal of vegetable corn. It took only 30 min. at 4 to 5 torr of cold chamber pressure of vacuum precooler to lower the corn temperature from 30 to 2$^{\circ}C$. The ice cooling was also thought to be a useful precooling method with relatively short cooling time of 6 hrs. The vegetable corn treated with vacuum or ice cooling showed low and stable respiration rates of 25.5 to 43.5 CO2 mg/kg/hr. when stored at 0∼2$^{\circ}C$ while the samples stored at room temperature (20∼25$^{\circ}C$) without precooling were as high as 64.1 to 245 CO, mg/kg/hr.

  • PDF

Effects of Water Amount in Refrigerant on Cooling Performance of Vehicle Air Conditioner (냉매 내 수분의 혼입량이 차량 에어컨의 냉각성능에 미치는 영향)

  • Moon, Seong-Won;Min, Young-Bong;Chung, Tae-Sang
    • Journal of Biosystems Engineering
    • /
    • v.36 no.5
    • /
    • pp.319-325
    • /
    • 2011
  • This study was conducted to figure out the diagnosis basis of cooling performance depending on water amount in the refrigerant of air conditioner, which can be estimated by the temperatures and pressures along the refrigerant circulation line. A car air conditioner of SONATA III (Hyundai motor Co., Korea) was tested at maximum cooling condition at the engine speed of 1500 rpm in the room controlled at 33~$35^{\circ}C$ air temperature and 55~57% relative humidity conditionally. Measured variables were temperature differences between inlet and outlet pipe surfaces of the compressor, condenser, receive drier and evaporator; and high pressure and low pressure in the refrigerant circulation line; and temperature difference between inlet and outlet air of the cooling vent of evaporator. In this study, changes of the water amount in the refrigerant were correlated to the temperatures and pressure changes and also water amount caused poor cooling performance. As water amount increased in the refrigerant in the air conditioner, the performance of the cooling or the heat transfer became worse. Temporal variations of the surface temperature of the evaporator outlet pipe and the low-side pressure showed various patterns that could estimate the water amount. When the water amount caused bad cooling performance, the patterns of the temperature of the evaporator outlet pipe indicated irregular fluctuation greater than $5^{\circ}C$. When the diagnosis system is using just external sensors of the low-side pressure and the temperatures of inlet and outlet air of cooling vent of the evaporator, the precise pattern of bad cooling performance caused by excess water amount in the cooling line was irregular pressure fluctuation, 25 kPa under 120 kPa, and temperature, $12^{\circ}C$ and less.

Characteristics Simulation of Electronics Cooling for a High-Temperature Superconducting Flux Flow Transistor Circuit (고온 초전도 자속흐름 트랜지스터에 적용된 전자냉각 특성 시뮬레이션)

  • Ko, Seok-Cheol;Kang, Hyeong-Gon;Lim, Sung-Hun;Du, Ho-Ik;Lee, Jong-Hwa;Han, Byoung-Sung
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.07b
    • /
    • pp.1063-1066
    • /
    • 2002
  • An equivalent circuit for the superconductor flux flow transistor(SFFT) was combined with high temperature cooling device, based on the analogy between thermal and electrical variables using the high-temperature superconductor(HTS), is proposed. The device is composed of parallel weak links with a nearby magnetic control line. A model has been developed that is based on solving the equation of motion of Abrikosov vortices subject to Lorentz viscous and pinning forces as well as magnetic surface barriers. The use of thermal models the global performance of thermal cooling circuit and signal system to be checked by using electrical circuit analysis programs such as SPICE.

  • PDF

Thermal-hydraulic simulation and evaluation of a natural circulation thermosyphon loop for a reactor cavity cooling system of a high-temperature reactor

  • Swart, R.;Dobson, R.T.
    • Nuclear Engineering and Technology
    • /
    • v.52 no.2
    • /
    • pp.271-278
    • /
    • 2020
  • The investigation into a full-scale 27 m high, by 6 m wide, thermosyphon loop. The simulation model is based on a one-dimensional axially-symmetrical control volume approach, where the loop is divided into a series of discreet control volumes. The three conservation equations, namely, mass, momentum and energy, were applied to these control volumes and solved with an explicit numerical method. The flow is assumed to be quasi-static, implying that the mass-flow rate changes over time. However, at any instant in time the mass-flow rate is constant around the loop. The boussinesq approximation was invoked, and a reasonable correlation between the experimental and theoretical results was obtained. Experimental results are presented and the flow regimes of the working fluid inside the loop identified. The results indicate that a series of such thermosyphon loops can be used as a cavity cooling system and that the one-dimensional theoretical model can predict the internal temperature and mass-flow rate of the thermosyphon loop.

On Cutting Characteristics Change of Low Temperature Cooling Tool(1st Report) - Cutting Characteristics of Cage Motor Rotor - (저온냉각공구의 절삭특성 변화 (제1보) -모터 회전자의 절삭특성)

  • 김순채;김희남
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1994.10a
    • /
    • pp.44-48
    • /
    • 1994
  • The cutting process of cage motor rotor require high precision and good roughness. The surface roughness of cutting face is very important factor with effect on the magnetic flux density of cage motor rotor. The paper describes a cause of decrease in the cutting force and roughness on low temperature cooling tool by means of analysis on the mechanism of force system at cutting confition and experimental findings. The main results as compared with the room temperature cutting are as follow : 1) The cutting resistance decreased due to low temperature cooling tool. 2) The surface roughness decreased due to low temperature cooling tool.

  • PDF

An Analysis of the Thermal Flow Characteristics in Engine-Room and VTRU in accordance with Application of Thermoelectric Device Cooling System to Prevent Overheating of the Korean Navy Ship VRTU (해군 함정 VRTU의 과열방지를 위한 열전소자 냉각장치의 적용에 따른 기관실 및 VRTU 내부 열 유동특성 분석)

  • Jung, Young In
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.9
    • /
    • pp.610-616
    • /
    • 2020
  • This study conducted joint research with the Navy logistics command ship technology research institute to resolve the occurrence of naval vessel's high-temperature warning and equipment shutdown caused by VRTU overheating during summer operation and the dispatch of troops to equatorial regions. The cooling effect was checked according to the installation of a thermoelectric device cooling system, and heat flow and heat transfer characteristics inside VRTU was analyzed using Computational Fluid Dynamics. In addition, the temperature distribution inside the engine room was assessed through interpretation, and the optimal installation location to prevent VRTU overheating was identified. As a result, the average volume temperature inside the VRTU decreased by approximately 10 ℃ with the installation of the cooling system, and the fan installed in the cooling system made the heat circulation smooth, enhancing the cooling effect. The inside of the engine room showed a high-temperature distribution at the top of the engine room, and the end of the HVAC duct diffuser showed the lowest temperature distribution.