• 제목/요약/키워드: High temperature ceramic

검색결과 1,581건 처리시간 0.023초

Effect of Hot-zone Aperture on the Growth Behavior of SiC Single Crystal Produced via Top-seeded Solution Growth Method

  • Ha, Minh-Tan;Shin, Yun-Ji;Bae, Si-Young;Park, Sun-Young;Jeong, Seong-Min
    • 한국세라믹학회지
    • /
    • 제56권6호
    • /
    • pp.589-595
    • /
    • 2019
  • The top-seeded solution growth (TSSG) method is an effective approach for the growth of high-quality SiC single crystals. In this method, the temperature gradient in the melt is the key factor determining the crystal growth rate and crystal quality. In this study, the effects of the aperture at the top of the hot-zone on the growth of the SiC single crystal obtained using the TSSG method were evaluated using multiphysics simulations. The temperature distribution and C concentration profile in the Si melt were taken into consideration. The simulation results showed that the adjustment of the aperture at the top of the hot-zone and the temperature gradient in the melt could be finely controlled. The surface morphology, crystal quality, and polytype stability of the grown SiC crystals were investigated using optical microscopy, high-resolution X-ray diffraction, and micro-Raman spectroscopy, respectively. The simulation and experimental results suggested that a small temperature gradient at the crystal-melt interface is suitable for growing high-quality SiC single crystals via the TSSG method.

세라믹 볼베어링의 특성해석에 관한 연구 (A Study on the Characteristics of Ceramic Ball Bearing)

  • 김완두;한동철
    • Tribology and Lubricants
    • /
    • 제8권2호
    • /
    • pp.64-72
    • /
    • 1992
  • The recent trends of rotating machinery demand high speed and high temperature operation, and the bearing with new material is required to be developed. Ceramic, especially silicon nitride, have been receiving attention as alternative material to conventional bearing steel. Ceramic ball bearing offers major performance advantages over steel bearing, for instance, high speed, maginal lubrication, high temperature, improved corrosion resistance and nonmagnetic capabilities etc.. In this paper, the mechanical characteristics of ceramic ball bearing (hybrid ceramic bearing and all ceramic bearing) were investigated, and the characteristics of ceramic bearing were compared with that of steel bearing. Deep groove ball bearing 6208 was taken the object of analysis. The main results of analysis were followings: the radial stiffness of hybrid and all ceramic bearing were 112% and 130% that of steel bearing, and the axial stiffness of all ceramic bearing was 110% that of steel bearing. According as rotating speed was up, the ball load, the contact angle, the contact stress and the spin-to-roll ratio between ball and raceway of ceramic bearing were far smaller than these of steel bearing. And there was not a significant difference between the minimum film thickness of ceramic bearing and steel bearing. It is expected that this research is contributed to enhanced fundamental technology for the practical applications of ceramic ball bearing.

Improved Temperature Stability in Dielectric Properties of 0.8BaTiO3-(0.2-x)NaNbO3-xBi(Mg1/2Ti1/2)O3 Relaxors

  • Goh, Yumin;Kim, Baek-Hyun;Bae, Hyunjeong;Kwon, Do-Kyun
    • 한국세라믹학회지
    • /
    • 제53권2호
    • /
    • pp.178-183
    • /
    • 2016
  • Ferroelectric relaxor ceramics with $BaTiO_3-NaNbO_3-Bi(Mg_{1/2}Ti_{1/2})O_3$ ternary compositions (BT-NN-BMT) have been prepared by sol-gel powder synthesis and consequent bulk ceramic processing. Through the modified chemical approach, fine and single-phase complex perovskite compositions were successfully obtained. Temperature and frequency dependent dielectric properties indicated typical relaxor characteristics of the BT-NN-BMT compositions. The ferroelectric-paraelectric phase transition became diffusive when NN and BMT were added to form BT based solid solutions. BMT additions to the BT-NN solid solutions affected the high temperature dielectric properties, which might be attributable to the compositional inhomogeneity of the complex perovskite and resulting weak dielectric coupling of the Bi-containing polar nanoregions (PNRs). The temperature stability of the dielectric properties was good enough to satisfy the X9R specification. The quasi-linear P-E response and the temperature- stable dielectric properties imply the high potential of this ceramic compound for use in high temperature capacitors.

세라믹캔들필터 집진 전후 Ash의 크기 및 분포에 관한 연구 (A study on Ash size and its distribution on cleaning of ceramic candle filter)

  • 정진도;이중범;김종영
    • 대한기계학회논문집B
    • /
    • 제20권5호
    • /
    • pp.1639-1648
    • /
    • 1996
  • Protection of gas turbine blade from its erosion and abrasion at high temperature and pressure is the first goal to cleanup the hot gas upstream for IGCC and PFBC. Ceramic filters represent an attractive technology for particle removal at high temperature and high pressure condition. They have demonstrated being a good system for improvement of thermal efficiency and reduction of effluent pollutants in advanced coal-based power systems such as IGCC and PFBC. Ceramic filter elements currently being developed were evaluated in the previous paper. In this paper, we measured the ash size and distribution on cleaning of ceramic candle filter. The results are as follows : in this experimental range, ceramic candle filter was shown to be fully adequate for the removal process of dust under high temperature and pressure. Also filtration efficiency of ceramic candle filter was higher than 98% compared with the regulation limit of particle size in gas turbine inlet.

세라믹 나노 안료의 동향 (Trend of Ceramic Nano Pigments)

  • 유리;김유진
    • 세라미스트
    • /
    • 제22권3호
    • /
    • pp.256-268
    • /
    • 2019
  • Ceramic nano pigments have attracted much interest owing to recent demand for nontoxic, heavy metal-free pigments. In general, ceramic pigments must possess thermal stability at high temperature, however nanosized powder easily undergoes aggregation at high temperature, and its color turns. serveral groups have focused on to minimize agglomeration and oxidation, a core-shell structure with a silica coating is suggested. In this review, we introduce the reported the trend of nano-ceramic powders and we summarized method improve color and physical properties throuth morphology control and ceramic coating technology.

Fabrication and Characterization of High Temperature Electrostatic Chucks

  • Bang, Jae-Cheol
    • The Korean Journal of Ceramics
    • /
    • 제5권1호
    • /
    • pp.87-90
    • /
    • 1999
  • It was suggested that tape casting method can be used to fabricate high-temperature electrostatic chucks(HTESC) based on a metal substrate coated with a glass-ceramic insulating layer. The adhesion of the coating was excellent such that it was able to withstand temperature cycling to over $300^{\circ}C$ without spalling. The electrostatic clamping pressure reached a very high value of about 9 torr at 600V and generally followed the theoretical voltage-squared curve. Based on these results, we believe that we successfully developed a viable technique for manufacturing low cost HTESC.

  • PDF

알루미나의 고온 굽힘크리프 및 크리프 파괴 (Bending Creep and Creep Fracture of Sintered Alumina under High-Temperature)

  • 김지환;권영삼;김기태
    • 한국세라믹학회지
    • /
    • 제31권5호
    • /
    • pp.543-551
    • /
    • 1994
  • The creep behavior and creep fracture of sintered alumina at high temperature were investigated under four point flexural test. Steady-state creep behavior was observed at low bending stress and primary creep until fracture was observed at hish bending stress. The loading history of bending stress did not affect on steady-state creep rate. Intergranular fracture was dominant for fracture of alumina at room and high temperature. However, transgranular fracture was dominant on creep of alumina under high temperature by nucleation and growth of microcracks due to residual flaws or cavities in the material.

  • PDF

원자력 극한환경용 세라믹 열교환기 소재로서 반응소결 SiC 세라믹스 제작성 (Fabricability of Reaction-sintered SiC for Ceramic Heat Exchanger Operated in a Severe Environment)

  • 정충환;박지연
    • 한국세라믹학회지
    • /
    • 제48권1호
    • /
    • pp.52-56
    • /
    • 2011
  • Silicon carbide (SiC) is a candidate material for heat exchangers for VHTR (Very High Temperature Gas Cooled Reactor) due to its refractory nature and high thermal conductivity. This research has focused on demonstration of physical properties and mock-up fabrication for the future heat exchange applications. It was found that the SiC-based components can be applied for process heat exchanger (PHE) and intermediate heat exchanger (IHX), which are operated at $400{\sim}1000^{\circ}C$, based on our examination for the following aspects: optimum fabrication technologies (design, machining and bonding) for compact design, thermal conductivity, corrosion resistance in sulfuric acid environment at high temperature, and simulation results on heat transferring and thermal stress distribution of heat exchanger mock-up.

세라믹/금속접합재의 열사이클피로에 따른 접합계면의 잔류응력분포 특성 (Singular Stress Field Analysis and Strength Evaluation in Ceramic/.Metal Joints)

  • 박영철;김현수;허선철;강재욱
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1996년도 춘계학술대회 논문집
    • /
    • pp.709-713
    • /
    • 1996
  • The ceramic has such high qualities as light weight, abrasion resistance, heat resistance compared with metal, but since it is breakable, it can't be used as structural material and it is desirable to joining metal which is full of toughness, but, according as the ceramic/metal joint is executed at high temperature, the joint residual stress develops near the joint sides in the process of cooling the high temperature down to the suitable temperature due to difference of the thermal expansion coefficient between ceramic and metal, and the joint residualstress lowers the fracture strength. In this study, to ensure security and improvement of bending strength, 1 studies on see distribution shape of residual stress according to high thermal cycle, and the influnence of theraml cycle and distribution shape of residual stess on joint-strength.

  • PDF

Thermal Evolution of BaO-CuO Flux as Sintering Aid for Proton Conducting Ceramic Fuel Cells

  • Biswas, Mridula;Hong, Jongsup;Kim, Hyoungchul;Son, Ji-Won;Lee, Jong-Ho;Kim, Byung-Kook;Lee, Hae-Weon;Yoon, Kyung Joong
    • 한국세라믹학회지
    • /
    • 제53권5호
    • /
    • pp.506-510
    • /
    • 2016
  • The eutectic melt of BaO-CuO flux is known to be a potential sintering aid for $Ba(Zr,Y)O_3$ (BZY) electrolyte for proton-conducting ceramic fuel cells (PCFCs). A density of BZY higher than 97% of theoretical density can be achieved via sintering at $1300^{\circ}C$ for 2 h using a flux composed of 28 mol% BaO and 72 mol% CuO. In the present study, chemical and structural evolution of BaO-CuO flux throughout the sintering process was investigated. An intermediate holding step at $1100^{\circ}C$ leads to formation of various impurity compounds such as $BaCuO_{1.977}$, $Ba_{0.92}Cu_{1.06}O_{2.28}$ and $Cu_{16}O_{14.15}$, which exhibit significantly larger unit cell volumes than the matrix. The presence of such secondary compounds with large lattice mismatch can potentially lead to mechanical failure. On the other hand, direct heating to the final sintering temperature produced CuO and $Cu_2O$ as secondary phases, whose unit cell volumes are close to that of the matrix. Therefore, the final composition of the flux is strongly affected by the thermal history, and a proper sintering schedule should be used to obtain the desired properties of the final product.