• Title/Summary/Keyword: High switching frequency

Search Result 1,183, Processing Time 0.026 seconds

A Novel Switched Capacitor Lossless Inductors Quasi-Resonant Snubber Assisted ZCS PWM High Frequency Series Load Resonant Inverter

  • Fathy, Khairy;Kang, Tae-Kyung;Kwon, Soon-Kurl;Suh, Ki-Young;Lee, Hyun-Woo;Nakaoka, Mutsuo
    • Proceedings of the KIEE Conference
    • /
    • 2005.10c
    • /
    • pp.169-171
    • /
    • 2005
  • In this paper, a novel type of auxiliary switched capacitor assisted edge resonant soft switching PWM series load resonant high frequency inverter with two auxiliary edge resonant lossless inductor snubbers is proposed for small consumer induction heating appliances. The operation principle of this high frequency inverter is described using the switching mode equivalent circuits. The practical effectiveness of the newly proposed soft switching inverter are discussed as compared with the conventional soft switching high frequency inverters based on simulation and experimental results from an application point of view.

  • PDF

Character of Induction Heating ZCS PWM SEPP High Frequency Inverter (유도가열용 ZCS PWM SEPP 고주파 인버터의 특성)

  • Mun, Sang-Pil;Kim, Chil-Ryong;Kwak, Dong-Kurl;Kim, Choon-Sam;Nakaoka, Mutsuo
    • Proceedings of the KIPE Conference
    • /
    • 2007.11a
    • /
    • pp.133-135
    • /
    • 2007
  • This research presented the new zero-current switching pulse width modulation SEPP(Single Ended Push-Pull)high frequency inverter for solving the problem of the zero-current SEPP high frequency inverter circuit which is using widely in the practical application of an induction heating apparatus, the soft switching operation and power control are impossible when the lowest power supply in the zero-current switching pulse width modulation SEPP high frequency inverter. The inverter circuit which is attempted by on-off operation of a switch has the reduction effect of the power loss due to a soft switching and a high frequency switching. And it confirmed that the power regulation is possible continuously from 0.25[kW] until 2.84[kW] in the case the duty rate(D) changes from 0.08 to 0.3 under zero-current switching operating by a dissymmetry pulse width modulating control and the power conversion efficiency comes true the efficiency of 95[%]. Due to the result above, the ZCS PWM SEPP high frequency inverter will be effective as sources of an induction heating apparatus.

  • PDF

Induction Heating ZCS PWM SEPP High Frequency Inverter (유도가열용 ZCS PWM SEPP 고주파 인버터)

  • Mun, Sang-Pil;Gwon, Sun-Geol;Lee, Jong-Geol;Ju, Seok-Min;Gang, Sin-Chul
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2008.10a
    • /
    • pp.241-243
    • /
    • 2008
  • This research presented the new zero-current switching pulse width modulation SEPP(Single Ended Push-Full)high frequency inverter for solving the problem of the zero-current SEPP high frequency inverter circuit which is using widely in the practical application of an induction heating apparatus, the soft switching operation and power control are impossible when the lowest power supply in the zero-current switching pulse width modulation SEPP high frequency inverter. The inverter circuit which is attempted by on-off operation of a switch has the reduction effect of the power loss due to a soft switching and a high frequency switching. And it confirmed that the power regulation is possible continuously from 0.25[kW] until 2.84[kW] in the case the duty rate(D) changes from 0.08 to 0.3 under zero-current switching operating by a dissymmetry pulse width modulating control and the power conversion efficiency comes true the efficiency of 95[%]. Due to the result above, the ZCS PWM SEPP high frequency inverter will be effective as sources of an induction heating apparatus.

  • PDF

A Design and Characteristic Analysis of ZVS-Half Bridge type High-Frequency Resonant DC-DC Converter Using Soft-Switching Technique (소프트 스위칭 기법을 이용한 ZVS-HB형 고주파 공진 DC-DC 컨버터의 설계 및 특성해석)

  • Oh, Kyeong-Seob;Nam, Seung-Sik;Kim, Kyeong-Sik;Kim, Dong-Hee;Ro, Chae-Gyun
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.50 no.4
    • /
    • pp.179-187
    • /
    • 2001
  • In recent years, the switching source devices have the advantage of small, light and high reliability with the high-frequency. But, high-frequency switching has disclosed disadvantage of result from stress and turn-on and turn-off peak losses at the switching instant. Accordingly, in this paper propose ZVS-HB type high-frequency resonant DC/DC converter using soft switching technique (Zero-Voltage-Switching, Zero-Current-Switching) with safety operating of circuit at diving on inductive zone, through the circuit design example using the capacitor $C_3,\;C_4$ with soft switching function and division characteristic of resonant Capacitor C, $C_1,\;C_2$, and, the characteristic analysis of circuit is generally described using normalized parameters. Also, this paper certified a rightfulness of characteristic analysis in comparison with a theoretical values and a experimental values obtain from experiment using MOSFET.

  • PDF

DC Rail Side Series Switch and Parallel Capacitor Snubber-Assisted Edge Resonant Soft-Switching PWM DC-DC Converter with High-Frequency Transformer Link

  • Morimoto, Keiki;Fathy, Khairy;Ogiwara, Hiroyuki;Lee, Hyun-Woo;Nakaoka, Mutsuo
    • Journal of Power Electronics
    • /
    • v.7 no.3
    • /
    • pp.181-190
    • /
    • 2007
  • This paper presents a novel circuit topology of a DC bus line series switch and parallel snubbing capacitor-assisted soft-switching PWM full-bridge inverter type DC-DC power converter with a high frequency planar transformer link, which is newly developed for high performance arc welding machines in industry. The proposed DC-DC power converter circuit is based upon a voltage source-fed H type full-bridge soft-switching PWM inverter with a high frequency transformer. This DC-DC power converter has a single power semiconductor switching device in series with an input DC low side rail and loss less snubbing capacitor in parallel with the inverter bridge legs. All the active power switches in the full-bridge arms and DC bus line can achieve ZCS turn-on and ZVS turn-off transition commutation. Consequently, the total switching power losses occurred at turn-off switching transition of these power semiconductor devices; IGBTs can be reduced even in higher switching frequency bands ranging from 20 kHz to 100 kHz. The switching frequency of this DC-DC power converter using IGBT power modules can be realized at 60 kHz. It is proved experimentally by power loss analysis that the more the switching frequency increases, the more the proposed DC-DC power converter can achieve a higher control response performance and size miniaturization. The practical and inherent effectiveness of the new DC-DC converter topology proposed here is actually confirmed for low voltage and large current DC-DC power supplies (32V, 300A) for TIG arc welding applications in industry.

Advanced Induction Heating Equipment using Dual Mode PWM-PDM Controlled Series Load Resonant Tank High Frequency Inverters

  • Fathy, Khairy;Kwon, Soon-Kurl;Nakaoka, Mutsuo
    • Journal of Power Electronics
    • /
    • v.7 no.3
    • /
    • pp.246-256
    • /
    • 2007
  • In this paper, a novel type auxiliary active edge resonant snubber assisted zero current soft switching pulse modulation Single-Ended Push Pull (SEPP) series load resonant inverter using IGBT power modules is proposed for cost effective consumer high-frequency induction heating (IH) appliances. Its operating principle in steady state is described by using each switching mode's equivalent operating circuits. The new multi resonant high-frequency inverter with series load resonance and edge resonance can regulate its high frequency output power under a condition of a constant frequency zero current soft switching (ZCS) commutation principle on the basis of the asymmetrical pulse width modulation (PWM) control scheme. Brand-new consumer IH products using the proposed ZCS-PWM series load resonant SEPP high-frequency inverter using IGBTs is evaluated and discussed as compared with conventional high-frequency inverters on the basis of experimental results. In order to extend ZCS operation ranges under a low power setting PWM as well as to improve efficiency, the high frequency pulse density modulation (PDM) strategy is demonstrated for high frequency multi-resonant inverters. Its practical effectiveness is substantially proved from an application point of view.

High Frequency Inverter using Zero-Voltage-Switching (Zero-Voltage-Switching을 이용한 고주파 인버어터)

  • Sim, K.Y.;Moon, C.S.;Kim, D.H.;Kim, Y.H.;Yoo, D.W.
    • Proceedings of the KIEE Conference
    • /
    • 1992.07b
    • /
    • pp.1133-1135
    • /
    • 1992
  • This paper describes high frequency inverter using zero voltage switching(ZVS). The ZVS operation is achieved to reduce the switching stress and switching loss under high speed switching. The proposed circuit configuration and performance are discussed. Its operation characteristics are evaluated through computer-aided simulation.

  • PDF

A Novel Soft-Switching PWM DC/DC Converter with DC Rail Series Switch-Parallel Capacitor Edge Resonant Snubber Assisted by High-Frequency Transformer Parasitic Components

  • Fathy, Khairy;Lee, Hyun-Woo;Nakaoka, Mutsuo
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2005.11a
    • /
    • pp.377-382
    • /
    • 2005
  • This paper presents two new circuit topologies of DC bus lineside active edge resonant snubber assisted soft-switching PWM full-bridge DC-DC converter acceptable for either utility AC 200V-rms or AC 400V-rms input voltage source. One topology of proposed DC-DC converters is composed of a typical voltage source-fed full-bridge high frequency PWM inverter using DC busline side series power semiconductor switching devices with the aid of a parallel capacitive lossless snubber. All the active power switches in the full-bridge arms and DC busline can achieve ZCS turn-on and ZVS turn-off commutations and the total turn-off switching power losses of all active switches can be reduced for high-frequency switching action. It is proved that the more the switching frequency of full-bridge soft switching inverter increases, the more soft-switching PWM DC-DC converter with a hish frequency transformer link has remarkable advantages for its efficiency and power density as compared with the conventional hard-switching PWM inverter type DC-DC converter

  • PDF

A Study on the Efficiency Improvement of Boost Converter for Power Factor Correction (PFC용 부스트 컨버터의 효율 개선에 관한 연구)

  • Jeon, Nae-Suck;Jeon, Su-Kyun;Lee, Sung-Geun;Kil, Guyng-Suk;Kim, Yoon-Sik
    • Proceedings of the KIEE Conference
    • /
    • 2002.07b
    • /
    • pp.1094-1096
    • /
    • 2002
  • A new technique for improving the efficiency of single-phase high-frequency boost converter is proposed. This converter includes an additional low-frequency boost converter which is connected to the main high-frequency switching device in parallel. The additional converter is controlled at lower frequency. Most of the current flows in the low-frequency switch and so, high-frequency switching loss is greatly reduced accordingly. Both switching device are controlled by a simple method; each controller consists of a comparator, a frequency generator and an error amplifier. The converter works cooperatively in high efficiency and acts as if it were a conventional high-frequency boost converter with one switching device, The proposed method is verified by simulation and experiment. This paper describes the converter configuration and design, and discusses the steady-state performance concerning the switching loss reduction and efficiency improvement.

  • PDF

Current Controlled PWM for Multilevel Voltage-Source Inverters with Variable and Constant Switching Frequency Regulation Techniques: A Review

  • Gawande, S.P.;Ramteke, M.R.
    • Journal of Power Electronics
    • /
    • v.14 no.2
    • /
    • pp.302-314
    • /
    • 2014
  • Due to advancements in power electronics and inverter topologies, the current controlled multilevel voltage-source pulse width modulated (PWM) inverter is usually preferred for accurate control, quick response and high dynamic performance. A multilevel topology approach is found to be best suited for overcoming many problems arising from the use of high power converters. This paper presents a comprehensive review and comparative study of several current control (CC) techniques for multilevel inverters with a special emphasis on various approaches of the hysteresis current controller. Since the hysteresis CC technique poses a problem of variable switching frequency, a ramp-comparator controller and a predictive controller to attain constant switching frequency are described along with its quantitative comparison. Furthermore, various methods have been reviewed to achieve hysteresis current control PWM with constant switching frequency operation. This paper complies various guidelines to choose a particular method suitable for application at a given power level, switching frequency and dynamic response.