• Title/Summary/Keyword: High strength shipbuilding steel

Search Result 21, Processing Time 0.033 seconds

Microstructures and Mechanical Properties of Friction Stir Welded High Strength Steels far Shipbuilding (선급용 고장력강 FSW접합부의 미세조직 및 기계적 성질)

  • 장웅성;최기용
    • Journal of Welding and Joining
    • /
    • v.20 no.3
    • /
    • pp.67-73
    • /
    • 2002
  • In an attempt to evaluate the feasibility of friction stir welding(FSW) for joining carbon steels, microstructures and mechanical properties of friction stir welded carbon steels with different grain structures were investigated. In comparison of O-type stir zone(SZ) appeared in various aluminium alloys, configuration of SZ in friction stir welded carbon steels displayed U-type. Plastically deformed pearlite band structure was identified to surround the SZ, indicating the existence of so-called thermo-mechanically affected zone(TMAZ). However, the TMAZ of carbon steels was much narrower than that of Al alloys. The microstructures of both stir zone and TMAZ revealed bainite matrix in a conventional carbon steel for shipbuilding, while, in the same region, ferrite matrix microstructures were formed in a low carbon fine grained steel. The conventional carbon steel showed superior stirring workability to that of the fine grained carbon steel. The yield and tensile strength of the friction stir welded joints were comparable to those of the base metals, and the elongation in welded joints demonstrated excellent ductility. Absorbed energy in SZ of the fine grained carbon steel was ten times higher than that obtained from conventional submerged arc weld metal of the same steel. Based on these results, the application FSW to carbon steels was found to be feasible.

A Study on the Low Temperature & High-strength Low-alloy Material for Casting Steel of the Offshore Structures (해양구조물용 저온 고강도 Casting Steel 소재 개발)

  • Lee, Soo-Ho;Han, Ki-Hyoung;Bae, Jae-Ryu;Kim, Tae-Won;Park, Sang-Sik;Kang, Chung-Gil
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.45 no.4
    • /
    • pp.426-431
    • /
    • 2008
  • The high-strength low-alloy(HSLA) steels have low carbon contents($0.05{\sim}0.25%$ C) in order to produce adequate formability and weldability, and they have manganese contents up to 1.7%. Small quantities of silicon, chromium, nickel, copper, aluminum, molybdenum are used in various combinations. The results contained in this paper can provide the valuable information on the development of $-40^{\circ}C$ low temperature HSLA. Furthermore, the present experimental data will provide important database for casting steel materials of the offshore structure.

High Productive Welding Technologies for Large Container Ship (대형 컨테이너선 건조를 위한 고능률 용접기술)

  • Goo, Yeon-Baeg;Sung, Hee-Joon;Choi, Kee-Young;Kim, Kyeong-Ju
    • Special Issue of the Society of Naval Architects of Korea
    • /
    • 2009.09a
    • /
    • pp.80-86
    • /
    • 2009
  • In order to improve productivity of large container ship construction, large heat input and/or high productive welding technologies are necessary. This can be achieved by the joint research and cooperation among steel maker, welding consumable company, welding equipment company and ship yards. Two electrodes SAW process is effective the plate butt welding and partial joint welding, while FGB welding process is for the connection of block to block joint. The higher strength and thicker steel is developed, the more reliable welding procedure such as two electrodes EGW including light weight welding equipment should be developed.

  • PDF

Simplified Formula for Predicting the Ballistic Limit Velocity of High Strength Shipbuilding Steel Plates Based on Experimental Data (함정용 고장력 판재의 방호한계속도 추정을 위한 간이 실험식)

  • Moon, Seok-Jun;Kim, Won;Song, Jinseop;Choi, Jong-Min
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.58 no.5
    • /
    • pp.322-329
    • /
    • 2021
  • Naval ships are designed to have a variety of active and passive systems to defend against enemy threats. One of the passive defense systems is to protect crew members and core equipment against the threat by using the outer plate of the equipment. This study was intended to deal with design methods against small arms ammunition and fragments. The Korea Institute of Machinery and Materials has measured the ballistic limit velocity of two types of high-tensile plate materials (AH36 and EH36) widely used in ships and offshore structures through tests in cooperation with various related organizations, and the result data is continuously accumulated. Based on the accumulated test results and data, such as mil test certificates of plate materials, it is intended to estimate the protection limit speed of high-tensile plates and to develop a simple calculating formula that can be used in the early design stage.

A study on the corrosion fatigue and cathodic protection of the welded zone between high tensile strength steel and general strength steel used for the shipbuilding (조선용 고장력강재와 보통강도강재간의 용접부위의 부식피로와 전기방식에 관한 연구)

  • 전대희;김원녕;이의호
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.8 no.2
    • /
    • pp.39-50
    • /
    • 1984
  • The plane bending corrosion fatigue test was performed on the welded zone between SM58 steel plate and SM41 steel plate jointed with submerged arc welding in the air and in the natural sea water with various conditions. The main results obtained from the test are summarized as follows: 1) The welded zone of the steel plates has the lowest impact strength and the highest electrode potential, but the hardness was mediate of SM58 base and SM41 base. 2) The cathodic protection of the welded zone was also effective for the plane bending corrosion fatigue, and the optimum protection potential of the welded zone was -1,000 mV SCE. 3) The corrosion fatigue strength under the various stress conditions of the steel plate could be estimated and also the require safety factors on the design could be obtained from the plane bending fatigue limit diagram.

  • PDF

A Study on Design Variables for Increasing the Breaking Strength of Synthetic Fiber Chain

  • Kyeongsoo Kim;Seonjin Kim;Hyunwoo Cho;Dokyoun Kim;Yongjun Kang;Taewan Kim
    • Journal of Ocean Engineering and Technology
    • /
    • v.37 no.1
    • /
    • pp.31-37
    • /
    • 2023
  • In this study, a fiber chain was developed to replace a steel chain using high-modulus polyethylene DM20. The pick count, wrapping count, and inner length were selected as the main design variables of the fiber chain and were analyzed to increase the breaking strength. Orthogonal array experiments were conducted, and the results were analyzed with respect to the breaking strength. The analysis revealed that the pick count and wrapping count had meaningful effects at significance levels within 5%. The main effect analysis revealed that a smaller pick count, larger wrapping count, and longer inner length caused the breaking strength to increase. With the wrapping count fixed at 1, a pick count less than -0.65, and an inner length greater than 0.38, the breaking strength was calculated to be greater than 300 kN. These results are expected be important factors in the derivation of an optimal combination of design variables to attain a fiber chain with a targeted strength.

A Study of Hydrogen Embrittlement Limit Potential of Cu-Containing High Strength Low Alloy Steel for Marine Structure by Potentiostatic SSRT Method (정전위 SSRT법에 의한 해양구조물용 Cu함유 고장력저합금강의 수소취성한계전위 규명에 관한 연구)

  • 김성종;박태원;심인옥;김종호;김영식;문경만
    • Journal of Welding and Joining
    • /
    • v.19 no.2
    • /
    • pp.182-190
    • /
    • 2001
  • A marine structural material was well known to have high tensile strength, good weldability and proper corrosion resistance. Cu-containing high strength low alloy(HSLA) steel was recently developed for their purposes mentioned above. And the steel is free about preheating for welding, therefore it is reported that shipbuilding cost by using it can be saved more or less. However the marine structural materials like Cu-containing HSLA steel are being generally adopted with cathodic protection method in severe corrosive environment like natural sea water but the high strength steel may give rise to Hydrogen Embrittlement due to over protection at high cathodic current density for cathodic protection. In this study Cu-containing HSLA steel using well for marine atructure was investigated about the susceptibility of Hydrogen Embrittlement as functions of tensile strength, strain ratio, fracture time, and fracture mode, etc. and an optimum cathodic protection potential by slow strain rate test(SSRT) method as well as corrosion properties in natural sea water. And its corrosion resistance was superior to SS400 steel, but Hydrogen Embrittlement susceptibility of Cu-containing HSLA steel was higer than that of SS400 steel. However Hydrogen Embrittlement of its steel by SSRT method was showed with pheonomena such as decreasing of fracture time, strain ratio and fracture mode of QC(quasi-cleavage). Eventually it is suggested that an optimum cathodic protection potential not presenting Hydrogen Embrittlement of Cu-containing of HSLA steel by SSRT method was from-770mv(SCE) to - 900mV(SCE)under natural sea water.

  • PDF

Tensile strength of thick plate welded joint with weld HAZ softening for hight heat input welding (대입열 용접에 의한 HAZ연화부를 갖는 극후판 용접이음부의 인장강도 평가)

  • Jang Tae-Won;Nam Seong-Gil;An Gyu-Baek
    • Proceedings of the KWS Conference
    • /
    • 2006.05a
    • /
    • pp.92-93
    • /
    • 2006
  • In recent time there are vigorous requirement for the use of thick steel plate in various industrial fields including shipbuilding industry. Application of TMCP steel plates, especially, is increase progressively. As a welding process for thick steel plate assembly high heat input welding method is used. However, HAZ softening of TMCP steel plates has a possibility to reduce the strength of welded joint. In this study, therefore, tensile strength of TMCP welds had softened HAZ was examined using numerical calculation and experiment.

  • PDF

Research on Mechanical Properties and Characteristics of Hybrid Composites for Boat (보트에 적용되는 하이브리드 복합재에 대한 기계적 특성 연구)

  • Cho, Je-Hyoung;Kim, Sung-Hoon;Yoon, Sung-Won;Ha, Jong-Rok;Kim, Myung-Hyun
    • Journal of Welding and Joining
    • /
    • v.34 no.2
    • /
    • pp.22-29
    • /
    • 2016
  • Recently, Application of composite materials are increased in transport area for weight reduction. Also, Related technical developments have been implemented actively at domestic and abroad. In particular, The carbon fiber has high strength and ultra light property higher than stainless steel, aluminum, GFRP as Eco-friendly material. Carbon fiber contribute to improving the environmental effect such as fuel saving, expansion of loadage, reducing the exhaustion of carbon dioxide through the weight reduction of transport area. In addition, The carbon fiber is applied to the ship in the area of race yacht, luxury cruise boat as weight reduction and high added-value materials, but there is limited application for general boat because price of carbon fiber is very expensive. For the weight reduction of general boat hull, being used as structure materials, glass fiber and carbon fiber are applied to hull with form of hybrid composite materials, but application of domestic and research for development are incomlete. In this study, An evaluations of mechanical strength property and fatigue strength are performed on composite materials by hybrid weaving of glass fiber and carbon fiber and composite materials forming method by hybrid forming.

Study of Brittle Crack Propagation Welding for EH40 Steel Plate in Shipbuilding Steel (조선용 EH40 강판의 용접부 취성 균열전파정지에 관한 연구)

  • Choi, Kyung-Shin;Lee, Sang-Hoon;Chung, Won-Jee;Hwang, Hui-Geon;Hong, Seok-Han;Hong, Ji-Ung
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.18 no.5
    • /
    • pp.9-16
    • /
    • 2019
  • Recent economic trends are worsening and becoming longer, and Korean shipbuilding is focused on high value added and high technology, especially for LNG carriers and large container ships. Both ship types increased in size in the 2010s but have requirements such as high strength, toughness at low temperatures and continuous weldability for preventing brittle fractures at service temperatures. In particular, as container ships become larger, the International Classification Society (IACS) has established a provision (IACS UR S33) that mandates the use of BCA (Brittle Crack Arrest) certified vessels for large container vessels contracted after 2014 to ensure safety. Therefore, studies on BCA 47Y.P are currently being undertaken, but BCA 40Y.P has not been actively studied yet. We will test BCA 40Y.P to verify why it can be applied to a large container ship and measure fatigue cracking.