• Title/Summary/Keyword: High speed railroad

Search Result 802, Processing Time 0.03 seconds

Analysis of Field Noise from High Speed Train Using Dedopplerization (도플러 보정을 통한 고속열차 현장 측정 소음 분석)

  • Lee, Yong Woo;Lee, Duck Joo;Kwon, Hyeok Bin;Yun, Su Hwan
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.23 no.5
    • /
    • pp.431-437
    • /
    • 2013
  • Measured acoustic signal from operating high speed train contains frequency change called doppler shift due to its motion. To avoid this doppler shift wind tunnel test is required. But scaledown of model can cause change of source characteristics. And measurements using some part of train cannot reproduce real flow condition. The best way to recognize real noise source characteristics is measurement from operating high speed train but doppler shift makes it hard. So, we developed simple dedopplerization technique for one microphone and applied to field test data of high speed train. Through this, we could capture real frequency of noise from operating high speed train.

Estimation of Maximum Load Capacity at Interconnection Line of High-Speed and Conventional Line (기존선-고속선 연결선 구간에서 최대부하용량 평가)

  • Lee, Chang-Mu;Lee, Han-Min;Oh, Seo-Chan;Kim, Gil-Dong;Jang, Gil-Soo
    • Proceedings of the KIEE Conference
    • /
    • 2008.07a
    • /
    • pp.1069-1070
    • /
    • 2008
  • At the coupling area linking high speed line and conventional line, according to distance between trains due to speed limit of conventional line, the power load of substation supplying to this conventional line increase. At the coupling area between Kimcheon SS and Kyoungsan SS, train operation have problems caused by instantaneous voltage drop. So, this paper propose evaluation method of maximum load capacity at current normal feeding condition.

  • PDF

Failure Analysis of Train Control System for Hign Speed Line by CAMS (CAMS에 의한 고속선 열차제어시스템의 장애 분석)

  • Kim, Yong-Kyu;Baek, Jong-Hyun;Kim, Jong-Ki;Shin, Duck-Ho
    • Proceedings of the IEEK Conference
    • /
    • 2006.06a
    • /
    • pp.973-974
    • /
    • 2006
  • In this paper, Computer-aided Maintenance Equipments, which are being used in maintenance, are applied to analyze failures in train control systems, resulting in long time delays of trains. It can be expected to extend and apply CAMS (Computer Aided Maintenance System) in the hereafter efficient operation and maintenance of high-speed railway train control systems, by comparison between the analysis result of fundamental causes, from high-speed railway train control system failures occurred during the operational process, and predictive result of failure causes, based on the recording data of CAMS when failures were occurred.

  • PDF

Development of a Train Performance Simulation S/W for The Performance Analysis of High Speed Railway System(2) (고속전철 시스템 성능해석을 위한 열차 주행시뮬레이션 S/W 개발(2))

  • Lee, Tae-Hyung;Hyun, Seung-Ho;Chung, Heuing-Chai;Hwang, Hee-Soo
    • Proceedings of the KIEE Conference
    • /
    • 2000.07b
    • /
    • pp.1381-1383
    • /
    • 2000
  • A multi-train operation simulation software is under development, in this G7 Project for a High Speed Train System, to simulate the running performance, power consumption, signalling and operation. In the first stage, a Train Performance Simulation (TPS) software is introduced in this paper. This is a core module of whole system and gives some parameters of a train, e.g., its position, speed traction and braking power and electric power system state, etc. In this paper, calculation technique was used for voltage drop at the train's positions and major posts along the catenary line. The final program will be used as an evaluation tool for system performance in constructing a new line or introducing a new train system.

  • PDF

Design of a Small-scaled Superconducting LSM for the Very High Speed Railway Vehicle (레일방식 초고속열차 추진용 축소 초전도 LSM 설계 연구)

  • Park, Chan-Bae;Kim, Jae-Hee;Lss, Byung-Song
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.63 no.11
    • /
    • pp.1602-1607
    • /
    • 2014
  • This paper deals with the design and property analysis of 7kW-class small-scaled superconducting Linear Synchronous Motor (LSM) and testing equipment for a number of performance pre-tests prior to the development of coreless-type superconducting LSM suitable for 600km/h very high speed train. First, the basic design and property analysis are conducted before developing a small-scaled superconducting LSM model with 2-pole superconducting electromagnets, and additionally the cost-down design of the superconducting electromagnets is conducted to use less high-Tc superconducting wire. Finally, the superconducting magnet coil span is selected at 120mm, and input ground armature current of 670Aturns is required to produce 44.7N of thrust based on research findings.

Comparison and Analysis of Return Current Measurement Values on High Speed Line (고속선 귀선전류 측정값 비교 및 분석)

  • Kim, Yong-Kyu;Kim, Ju-Yeop;Oh, Seh-Chan;Baek, Jong-Hyun;Yoon, Yong-Ki;Kwak, Woo-Hyun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.66 no.5
    • /
    • pp.877-884
    • /
    • 2017
  • A method of common earth, which is proposed by French Railway(SNCF) and is applied to high speed railway, minimizes the effect of the traction return current from tracks so that trackside electric devices can be protected and operation and maintenance staffs are kept out from injury in an electric railway environment. According to it, all the new domestic electric railway lines are replaced from existing individual earth method to the common earth method. In this paper, we analyze the correlation between common earth method and traction return current to prove whether the common earth has surely contributed to minimize the effect of the traction return current. The analysis was done based on the measurement of the traction return current at the domestic high speed railway line.

A Study on the Systems Engineering Management Plan for the Korean High-speed Electric Multiple Unit 400km/h Experimental (차세대 고속열차 개발을 위한 시스템엔지니어링 관리계획 연구)

  • Lee, Tae Hyung;Choi, Sung Hoon;Kim, Sang Soo;Park, Choon Soo;Kim, Ki Hwan
    • Journal of the Korean Society of Systems Engineering
    • /
    • v.3 no.2
    • /
    • pp.17-24
    • /
    • 2007
  • The HEMU-400X(High-speed Electric Multiple Unit 400km/h eXperiment) project starts in 2007. It is required to control and balance the systems engineering activities throughout the project life cycle for a successful completion of the project. The Systems Engineering Management Plan(SEMP) is the primary, top level technical management document for the integration of all engineering activities within the context of, and as an expansion of, the project plan. A SEMP should be prepared for each project and regularly updated as development progresses. This paper proposes the systems engineering management plan for the HEMU-400X project.

  • PDF

Comparison of Relative Weights of Cost for Road-bed Construction and Energy on Life Cycle Cost of Railroad -in Case of Seoul-pusan High Speed Rail (철도노선의 생애주기비용에서 노반건설비와 에너지비용의 상대적 비중 분석 - 경부고속철도 사례를 중심으로)

  • Suh, Sunduck;Kim, Jeong Hyun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.34 no.4
    • /
    • pp.1261-1267
    • /
    • 2014
  • It is generally recognize that the weight of energy cost for railroad alignment in the life cycle cost is higher than that for roadway. This study analyzed the relative weights of railroad road-bed construction cost and energy cost in the case of Seoul-Pusan High Speed Rail. Recently, the optimization of railroad alignment with computerized methodology has been studies. The optimization is supposed to aim the minimization of life cycle cost including the energy cost as well as the minimization of the construction cost. The operation period of the Seoul-Pusan High Speed Rail is limited to ten years, then various future operation scenario were developed for the next 20 years. The weight of energy cost is estimated 10~30% of the construction cost by scenario, and it is lower than the figure generally expected. It may be meaningful to provide the method to include the energy cost in the railroad alignment optimization.

An Accurate Velocity Estimation using Low Resolution Tachometer of High-Speed Trains (고속열차의 저해상도 타코미터를 이용한 정확한 속도 추정에 관한 연구)

  • Lee, Jae-Ho;Kim, Seong Jin;Park, Sungsoo
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.67 no.1
    • /
    • pp.131-136
    • /
    • 2018
  • Reliable velocity estimation technology for trains is one of technologies used to operate trains safely and effectively. Various sensors such as tachometers, doppler radars, and global positioning systems are used to estimate velocity of a train. Tachometer is widely used to estimate velocity of a trains due to its simplicity, small volume, cost-effectiveness, continuously measurement at high speed, and robustness against noise. Accuracy in the velocity calculation using a tachometer depends on quantization error, measurement error of wheel radius or diameter, and tachometer's imperfection from manufacturing or installation process. In this paper, we present an accurate velocity estimation method using a low-resolution tachometer, which is commonly installed on a high-speed train. Baseline estimation method is proposed to accurately calculate the velocity of the high-speed train from tachometer's pulses. HEMU-430x test train is used for the experiment and verification of the proposed method. Experimental results with several routes show that the proposed method is more accurate than a conventional method.

Analysis for Catenary System with Focus on Abnomal Conditions on Honam High Speed Line (호남고속철도 전차선로의 이상 상태 분석)

  • Jun, Jaegeun;Shin, Seungkwon;Jung, Hosung;Na, Kyungmin;Park, Young
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.32 no.1
    • /
    • pp.1-5
    • /
    • 2019
  • The overhead contact line (OCL) is a key piece of equipment for transmitting electrical energy to the pantograph of rail cars. Recently, a 400 km/h OCL was applied to the Honam high-speed line, and its performance was examined by running HEMU-430X. For the study, we analyzed the current of catenary wire concurrently while running HEMU-430X in the Honam high-speed line. Specifically, this study recorded the currents for each speed during operation of the railway vehicle. The analysis of the frequency of line current showed generation of third-harmonics, 15th-harmonics, 17th-harmonics, and 19th-harmonics. The current of catenary wire is a basic technology assessment used to determine the electrical safety of electric railway systems, and it can be used as a technology for analyzing circulating currents generated in the current configuration, as well as for analyzing electric fatigue of the OCL components.