• 제목/요약/키워드: High speed press machine

검색결과 29건 처리시간 0.018초

자동차 금형 생산공정의 물류분석 (Performance Analysis of a Die FAbrication Process In Automotive Production)

  • 김상훈
    • 한국시뮬레이션학회:학술대회논문집
    • /
    • 한국시뮬레이션학회 1998년도 추계학술대회 및 정기총회
    • /
    • pp.36-40
    • /
    • 1998
  • Tool shop of the‘D’Motor Co.(DMC) fabricates dies for producing automotive press panels. In order to increase the production capacity of the tool shop, DMC established an FMS that consists of high-speed machines and a CMM at the tool shop in 1997. Due to the difference in machine capability among the existing machines and the new FMS it is needed to find an optimal way of allocating workloads among machines to maximize the production. In a way to solve this, we model the die fabrication process of the tool shop and analyze its performance by computer simulation. In this study, we at first identify the bottleneck processes of the die fabrication process under the current operation policy. Then, we derive some alternative operating policies applicable to the tool shop, and analyze the optimal operation policy by comparing the performance of the tool shop following each alternative policy.

  • PDF

Study for improvement of grounds subjected to cyclic loads

  • Mittal, Satyendra;Meyase, Kenisevi
    • Geomechanics and Engineering
    • /
    • 제4권3호
    • /
    • pp.191-208
    • /
    • 2012
  • Due to rapid industrialisation, large scale infrastructure development is taking place worldwide. This includes railways, high speed highways, elevated roads etc. To meet the demands of society and industry, many innovative techniques and materials are being developed. In developed nations like USA, Japan etc. for railways applications, new material like geocells, geogrids are being used successfully to enable fast movement of vehicles. The present research work was aimed to develop design methodologies for improvement of grounds subjected to cyclic loads caused by moving vehicles on roads, rail tracks etc. Deformation behavior of ballast under static and cyclic load tests was studied based on square footing test. The paper presents a study of the effect of geo-synthetic reinforcement on the (cumulative) plastic settlement, of point loaded square footing on a thick layer of granular base overlying different compressible bases. The research findings showed that inclusion of geo-synthetics significantly improves the performance of ballasted tracks and reduces the foundation area. If the area is kept same, higher speed trains can be allowed to pass through the same track with insertion of geosynthetics. Similarly, area of machine foundation may also be reduced where geosynthetics is provided in foundation. The model tests results have been validated by numerical modeling, using $FLAC^{3D}$.

고정도.고속 Groove Die Set (High-accuracy and High-speed Groove Die Set)

  • 김건회
    • 한국공작기계학회논문집
    • /
    • 제17권1호
    • /
    • pp.7-15
    • /
    • 2008
  • Currently existing high-accuracy and high-speed die sets used in reciprocal press create scratches at the surface of guide posts, steel balls, and bushes due to vertical movement of balls with point-contacts between inner surface of bushes and guide posts. Consequently, accuracy of the die set and the life span of the metal mold are reduced. However, those scratches could reduce the pre-load of the steel ball. This research designed and developed a groove-type die set which improves life span of the die set by eliminating point-contacts of steel balls with guide posts. The guide post consisted of a steel-ball retainer, a steel-ball retainer stopper, a guide bush, a guide pin, a snap ring, and a spring. The steel-ball retainer has 72 holes with 8 columns of 9 holes in each column. The inner surface of the guide bush was grinded(surface roughness: $Ra\;\\;0.2{\mu}m$, accuracy: $0\;{\sim}\;-0.002mm$) after NC turning and heat treatment. Also, a line of small intermediate pocket was processed inside of the guide bush for lubrication and elimination of foreign materials. Guide grooves of steel balls were processed using a wire EDM(Electrical Discharge Machining) after heat treatment. With such a design of the guide post stated above, loads against steel balls could be dispersed greatly by the line contacts through the guide groove between the guide post and the guide bush, and the life span of the guide post could be expanded semi-permanently.

Friction welding of multi-shape ABS based components with Nano Zno and Nano Sio2 as welding reinforcement

  • Afzali, Mohammad;Rostamiyan, Yasser
    • Coupled systems mechanics
    • /
    • 제11권3호
    • /
    • pp.267-284
    • /
    • 2022
  • Due to the high usage of ABS in industries, such as aerospace, auto, recreational devices, boat, submarines, etc., the purpose of this project was to find a way to weld this material, which gives advantages, such as affordable, high speed, and good connection quality. In this experimental project, the friction welding method was applied with parameters such as numerical control (NC) machine with two different speeds and three cross-sections, including a flat surface, cone, and step. After the end of the welding process, samples were then applied for both tensile and bending tests of materials, and the results showed that, with increasing the machining velocity Considering of samples, the friction of the surface increased and then caused to increase in the surface temperature. Considering mentioned contents, the melting temperature of composite materials increased. This can give a chance to have a better combination of Nanomaterial to base melted materials. Thus, the result showed that, with increasing the weight percentage (wt %) of Nanomaterials contents, and machining velocity, the mechanical behavior of welded area for all three types of samples were just increased. This enhancement is due to the better melting process on the welded area of different Nano contents; also, the results showed that the shape of the welding area could play a significant role, and by changing the shape, the results also changed drastically.A better shape for the welding process was dedicated to the step surface.

Full-scale TBM excavation tests for rock-like materials with different uniaxial compressive strength

  • Gi-Jun Lee;Hee-Hwan Ryu;Gye-Chun Cho;Tae-Hyuk Kwon
    • Geomechanics and Engineering
    • /
    • 제35권5호
    • /
    • pp.487-497
    • /
    • 2023
  • Penetration rate (PR) and penetration depth (Pe) are crucial parameters for estimating the cost and time required in tunnel construction using tunnel boring machines (TBMs). This study focuses on investigating the impact of rock strength on PR and Pe through full-scale experiments. By conducting controlled tests on rock-like specimens, the study aims to understand the contributions of various ground parameters and machine-operating conditions to TBM excavation performance. An earth pressure balanced (EPB) TBM with a sectional diameter of 3.54 m was utilized in the experiments. The TBM excavated rocklike specimens with varying uniaxial compressive strength (UCS), while the thrust and cutterhead rotational speed were controlled. The results highlight the significance of the interplay between thrust, cutterhead speed, and rock strength (UCS) in determining Pe. In high UCS conditions exceeding 70 MPa, thrust plays a vital role in enhancing Pe as hard rock requires a greater thrust force for excavation. Conversely, in medium-to-low UCS conditions less than 50 MPa, thrust has a weak relationship with Pe, and Pe becomes directly proportional to the cutterhead rotational speed. Furthermore, a strong correlation was observed between Pe and cutterhead torque with a determination coefficient of 0.84. Based on these findings, a predictive model for Pe is proposed, incorporating thrust, TBM diameter, number of disc cutters, and UCS. This model offers a practical tool for estimating Pe in different excavation scenarios. The study presents unprecedented full-scale TBM excavation results, with well-controlled experiments, shedding light on the interplay between rock strength, TBM operational variables, and excavation performance. These insights are valuable for optimizing TBM excavation in grounds with varying strengths and operational conditions.

Comparison of RANS, URANS, SAS and IDDES for the prediction of train crosswind characteristics

  • Xiao-Shuai Huo;Tang-Hong Liu;Zheng-Wei Chen;Wen-Hui Li;Hong-Rui Gao;Bin Xu
    • Wind and Structures
    • /
    • 제37권4호
    • /
    • pp.303-314
    • /
    • 2023
  • In this study, two steady RANS turbulence models (SST k-ω and Realizable k-ε) and four unsteady turbulence models (URANS SST k-ω and Realizable k-ε, SST-SAS, and SST-IDDES) are evaluated with respect to their capacity to predict crosswind characteristics on high-speed trains (HSTs). All of the numerical simulations are compared with the wind tunnel values and LES results to ensure the accuracy of each turbulence model. Specifically, the surface pressure distributions, time-averaged aerodynamic coefficients, flow fields, and computational cost are studied to determine the suitability of different models. Results suggest that the predictions of the pressure distributions and aerodynamic forces obtained from the steady and transient RANS models are almost the same. In particular, both SAS and IDDES exhibits similar predictions with wind tunnel test and LES, therefore, the SAS model is considered an attractive alternative for IDDES or LES in the crosswind study of trains. In addition, if the computational cost needs to be significantly reduced, the RANS SST k-ω model is shown to provide relatively reasonable results for the surface pressures and aerodynamic forces. As a result, the RANS SST k-ω model might be the most appropriate option for the expensive aerodynamic optimizations of trains using machine learning (ML) techniques because it balances solution accuracy and resource consumption.

Reliability of mortar filling layer void length in in-service ballastless track-bridge system of HSR

  • Binbin He;Sheng Wen;Yulin Feng;Lizhong Jiang;Wangbao Zhou
    • Steel and Composite Structures
    • /
    • 제47권1호
    • /
    • pp.91-102
    • /
    • 2023
  • To study the evaluation standard and control limit of mortar filling layer void length, in this paper, the train sub-model was developed by MATLAB and the track-bridge sub-model considering the mortar filling layer void was established by ANSYS. The two sub-models were assembled into a train-track-bridge coupling dynamic model through the wheel-rail contact relationship, and the validity was corroborated by the coupling dynamic model with the literature model. Considering the randomness of fastening stiffness, mortar elastic modulus, length of mortar filling layer void, and pier settlement, the test points were designed by the Box-Behnken method based on Design-Expert software. The coupled dynamic model was calculated, and the support vector regression (SVR) nonlinear mapping model of the wheel-rail system was established. The learning, prediction, and verification were carried out. Finally, the reliable probability of the amplification coefficient distribution of the response index of the train and structure in different ranges was obtained based on the SVR nonlinear mapping model and Latin hypercube sampling method. The limit of the length of the mortar filling layer void was, thus, obtained. The results show that the SVR nonlinear mapping model developed in this paper has a high fitting accuracy of 0.993, and the computational efficiency is significantly improved by 99.86%. It can be used to calculate the dynamic response of the wheel-rail system. The length of the mortar filling layer void significantly affects the wheel-rail vertical force, wheel weight load reduction ratio, rail vertical displacement, and track plate vertical displacement. The dynamic response of the track structure has a more significant effect on the limit value of the length of the mortar filling layer void than the dynamic response of the vehicle, and the rail vertical displacement is the most obvious. At 250 km/h - 350 km/h train running speed, the limit values of grade I, II, and III of the lengths of the mortar filling layer void are 3.932 m, 4.337 m, and 4.766 m, respectively. The results can provide some reference for the long-term service performance reliability of the ballastless track-bridge system of HRS.

Analysis of the machinability of GFRE composites in drilling processes

  • Khashaba, Usama. A.;Abd-Elwahed, Mohamed S.;Ahmed, Khaled I.;Najjar, Ismail;Melaibari, Ammar;Eltaher, Mohamed A
    • Steel and Composite Structures
    • /
    • 제36권4호
    • /
    • pp.417-426
    • /
    • 2020
  • Drilling processes in fiber-reinforced polymer composites are essential for the assembly and fabrication of composite structural parts. The economic impact of rejecting the drilled part is significant considering the associated loss when it reaches the assembly stage. Therefore, this article tends to illustrate the effect of cutting conditions (feed and speed), and laminate thickness on thrust force, torque, and delamination in drilling woven E-glass fiber reinforced epoxy (GFRE) composites. Four feeds (0.025, 0.05, 0.1, and 0.2 mm/r) and three speeds (400, 800, and 1600 RPM) are exploited to drill square specimens of 36.6×36.6 mm, by using CNC machine model "Deckel Maho DMG DMC 1035 V, ecoline". The composite laminates with thicknesses of 2.6 mm, 5.3 mm, and 7.7 mm are constructed respectively from 8, 16, and 24 glass fiber layers with a fiber volume fraction of about 40%. The drilled specimen is scanned using a high-resolution flatbed color scanner, then, the image is analyzed using CorelDraw software to evaluate the delamination factor. Multi-variable regression analysis is performed to present the significant coefficients and contribution of each variable on the thrust force and delamination. Results illustrate that the drilling parameters and laminate thickness have significant effects on thrust force, torque, and delamination factor.

착색지르코니아 코어와 전장 도재 사이의 전단결합강도에 관한 연구 (A study on the shear bond strengths of veneering ceramics to the colored zirconia core)

  • 강선녀;조욱;전영찬;정창모;윤미정
    • 대한치과보철학회지
    • /
    • 제47권3호
    • /
    • pp.312-319
    • /
    • 2009
  • 연구목적: 지르코니아-도재 수복물에 있어 상부도재와 코어 사이의 결합 실패가 종종 보고되어 왔으며 특히 착색지르코니아 코어는 기존의 백색 지르코니아보다 상부 도재와의 결합력이 약하다고 보고된 바 있다. 이 연구의 목적은 착색 지르코니아 코어 위의 상부도재를 적층식과 열가압식으로 제작하여 그 전단결합강도를 알아보고, 이를 전통적인 금속-도재간 결합강도와 비교하여 그 임상적 안정성을 평가하는 것이다. 연구 재료 및 방법: 금속도재군 (MC)을 대조군으로 하였다. 전통적인 금속도재군 (MC)과 지르코니아 코어를 사용한 두가지 군 (ZB, ZP)에 대하여 각 시스템별로 10개씩, 총 30개의 시편을 제작했다. CAD/CAM을 이용해 직경 12 mm, 높이 2.8 mm의 원판형 지르코니아 코어 (Katana zirconia)를 제작하고, 그 상부에 직경 2.8 mm, 높이 3 mm의 도재를 축성했다. ZB군은 CZR을 이용하여 적층법으로 상부도재를 제작했으며 ZP군은 NobelRondo Press ingot를 열가압하여 제작했다. Shear bond test machine (R&B Inc. Daejeon, Korea)을 이용하여 분당 0.50 mm의 속도로 파절이 일어날 때까지 전단력을 가하여 최대적용력 (N)을 측정하여 전단결합강도를 계산하고, 일원배치 분산분석을 사용하여 유의수준 5%에서 검정하였다. 파절양상을 알아보기 위하여 전자주사현미경을 통해 파절단면을 관찰했다. 결과: 평균 전단강도 (SD)는 MC 대조군 29.14 (2.26); ZB 29.48 (2.30); ZP 29.51 (2.32) 이었다. 실험군과 대조군 사이에 유의한 차이는 없었다. 모든 실험군에서 접착성 실패와 응집성 실패가 혼재된 양상을 보였으며, 응집성 실패가 우세했다. 결론: 1. 착색지르코니아 코어와 상부도재들 간의 전단결합강도는 금속 도재간 전단결합강도와 유의한 차이가 없었다. 2. 착색지르코니아 코어의 상부도재를 제작하는 방식에 있어 적층법과 열가압법 간의 전단결합강도에 유의한 차이는 없었다 (P > .05). 3. 파절양상은 응집성 파절이 우세한 가운데 접착성 파절과 응집성 파절이 혼재되어 나타났다.