• 제목/요약/키워드: High speed milling

검색결과 200건 처리시간 0.024초

압축냉각공기를 이용한 공구수명 향상에 관한 연구 (The study on improving tool life using compressed chilly air)

  • 김찬우;이채문;이득우;김정석;정우섭
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 2003년도 춘계학술대회 논문집
    • /
    • pp.510-515
    • /
    • 2003
  • High-speed machining generates concentrated Thermal/fractional damage at the cutting edge and rapidly decreases the tool life. This paper is aimed at improving the tool life using compressed chilly air. In this paper, the experiments were carried out in various cutting environments, such as dry, wet and compressed chilly air. Tool life were measured to evaluate machinability in high-speed milling of various materials. With respect to the cutting environment, compressed chilly air increased tool life. However, the wet condition decreased tool life due to the thermal shock caused by excessive cooling.

  • PDF

고속 엔드밀 가공에서 가공변질층의 특성 (Characteristics of damaged layer in high speed end milling)

  • 김동은
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 2000년도 춘계학술대회논문집 - 한국공작기계학회
    • /
    • pp.326-331
    • /
    • 2000
  • In this study, residual stress was investigated experimentally to evaluate damaged layer in high-sped machining. In machining difficult-to-cut material, residual stress remaining in machined surface was mainly speared as compressive stress. The scale of this damaged layer depends upon cutting speed, feed per tooth and radial cutting depth. Damaged layer was measured by optical microscope. The micro-structure of damaged layer was a mixed maternsite and austenite. depth of damaged layer is increased with increasing of cutting temperature, cutting force and radial depth. On the other hand, that is slightly decreased with decreasing of cutting force. The increase of tool wear causes a shift of the maximum residual stress in machined surface layer.

  • PDF

슬라이딩 모드 제어기를 이용한 밀링공정의 절삭력 제어 (Cutting Force Regulation in Milling Process Using Sliding Mode Control)

  • 이상조;이용석;고정한
    • 대한기계학회논문집A
    • /
    • 제25권8호
    • /
    • pp.1173-1182
    • /
    • 2001
  • Recent noticeable advances of CNC machine tools have considerably improved productivity and precision in manufacturing processes. However, in the respect of productivity some defects still remain because selection of machining conditions entirely depends on the experiences of programmers. Usually, machining conditions such as feed rate and spindle speed have been selected conservatively by considering the worst cases, and it has brought the loss of machining efficiency. Thus, the improvement of cutting force controller has been done to regulate cutting force constantly and to maximize feedrate simultaneously in case that machining conditions change variously. In this study, sliding mode control with boundary layer is applied to milling process for cutting force regulation and in a commercial CNC machining center data transfer between PC and PMC (programmable machine controller) of CNC machine is done using a standard interface method. And in the cutting force measurement, an indirect cutting force measuring system using current signal of AC servo is adopted in order not to use high-priced equipment like tool dynamometer. The purpose of this study is to maximize the productivity in milling process, thus its results can be applied to cases such as rough cutting process.

플라스틱 소재의 표면가공 중 공정조건의 영향 (Effect of Processing Parameters in Surface Machining of Plastic Materials)

  • 한창모;이봉기
    • 한국기계가공학회지
    • /
    • 제15권5호
    • /
    • pp.1-7
    • /
    • 2016
  • In the present study, a plastic surface end-milling was implemented to investigate the effects of processing parameters on surface quality. The end milling can be considered an efficient method for rapid prototyping of thermoplastic bio-systems since it exhibits several beneficial functions including short fabrication time and high dimensional accuracy. In this regard, putative biocompatible thermoplastic materials, such as PMMA, PET, and PC, were chosen as workpiece materials. Among the relevant processing parameters influencing the surface quality of the final product, depth of cut, feed rate, and spindle speed were considered in the present study. The roughness of surfaces machined under various conditions was measured to elucidate the effect of each parameter. We found that the cut depth was the most significant factor. Heat generation during machining also had a remarkable effect. From these investigations, an appropriate combination of processing conditions specific to each type of use and end-product could be found. This optimization can be useful in end-milling of thermoplastic bio-systems.

AIN-hBN계 머시너블 세라믹스의 기계적 특성 및 엔드밀링 가공성 평가 (Mechanical Properties and End-milling Characteristic of AIN-hBN Based Machinable Ceramics)

  • 백시영;조명우;조원승
    • 한국세라믹학회지
    • /
    • 제45권1호
    • /
    • pp.75-81
    • /
    • 2008
  • In this study, machining characteristics of AIN-hBN composites were evaluated in end-milling process. As a first step, AIN-hBN composite specimens with various hBN contents were prepared using hot press method. Material properties of the composites, such as relative density, Young's modulus and fracture toughness, were measured and compared. Then, a series of end-milling experinients were performed under various cutting conditions by changing cutting speed, depth-of-cut and feed rate. Cutting force variations were measured using a tool dynamometer during the cutting experiments. Machined surfaces of the specimens were observed using SEM and a surface pro filer to investigate the surface integrity changes. The cutting force decreased with an increases of hBN content. The cutting process was almost impossible for monolithic AIN, owing to severe chipping. In contrast, at high content of hBN, surface damage and chipping decreased, and better surface roughness can be obtained.

우리나라의 대규모 곡물 종합조제시설의 문제점 및 전망 (Prospect of large scale Grain Drying, Storage and Milling Facility Complex in Korea)

  • 김태욱;박경규
    • Current Research on Agriculture and Life Sciences
    • /
    • 제14권
    • /
    • pp.37-47
    • /
    • 1996
  • The main objectives of this studies are to present the most desirable rice processing complex model system in a given our situations by comparision and analyzing the major factors and, also recommend the future prospect of the rice processing complex in Korea. There are 3 different rice processing complex models in Korea. Those are concrete bin, flat type steel bin and square bin. These systems have a lot of differences and have their own characteristics such as capital requirement, efficiency, storage capacity and quality controls. The major problems of the existing rice processing centers in Korea are high fixed cost and the unbalnced systems. Following is summary to solve this problems: 1. Development of the large scale harvester and high speed continuous dryer. 2. Quality inspective system of bulk grain and large scale temporary storage facilities. 3. Large size readjustment of arable land. 4. Select the convenient location of rice processing center and formulation of well equipment facilities.

  • PDF

고속 HMC 이송계의 운동특성 평가 및 운동오차 예측 (Performance Assessment and Contouring Error Prediction of High Speed HMC)

  • 최헌종;허남환;강은구;이석우;홍원표
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 2004년도 추계학술대회 논문집
    • /
    • pp.375-381
    • /
    • 2004
  • Recently, the evolution in production techniques (e.g. high-speed milling) and the complex shapes involved in modem production design has been increasingly popular. The key to the achievement is a drastic improvement of the dynamic behavior of the machine tool axes used in production machinery. The more complex these tool paths the higher the speed and acceleration requirements. But it is very difficult to reach the target for high speed machine tool because of the limitations of servo system and motion control system. However the direct drive design of machine tool axes, which is based on linear motors and which recently appeared on the market, is a viable candidate to meet the ever increasing demands, because of these advantages such as no backlash, less friction, more mechanical simplicity and very higher acceleration and velocity comparing to the traditional system. This paper focused on the performance tests of the high speed horizontal machine tool based on linear motor. Especially, dynamic characteristics were investigated through circular test and circular form machining test is carried out considering many important parameter. Therefore these several experiments is used to be evaluated the model for prediction of circular motion error and circular machined error.

  • PDF

Inductively Coupled Plasma Reactive Ion Etching of MgO Thin Films Using a $CH_4$/Ar Plasma

  • Lee, Hwa-Won;Kim, Eun-Ho;Lee, Tae-Young;Chung, Chee-Won
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2011년도 제40회 동계학술대회 초록집
    • /
    • pp.77-77
    • /
    • 2011
  • These days, a growing demand for memory device is filled up with the flash memory and the dynamic random access memory (DRAM). Although DRAM is a reasonable solution for current demand, the universal novel memory with high density, high speed and nonvolatility, needs to be developed. Among various new memories, the magnetic random access memory (MRAM) device is considered as one of good candidate memories because of excellent features including high density, high speed, low operating power and nonvolatility. The etching of MTJ stack which is composed of magnetic materials and insulator such as MgO is one of the vital process for MRAM. Recently, MgO has attracted great interest in the MTJ stack as tunneling barrier layer for its high tunneling magnetoresistance values. For the successful realization of high density MRAM, the etching process of MgO thin films should be investigated. Until now, there were some works devoted to the investigations on etch characteristics of MgO thin films. Initially, ion milling was applied to the etching of MgO thin films. However, ion milling has many disadvantages such as sidewall redeposition and etching damage. High density plasma etching containing the magnetically enhanced reactive ion etching and high density reactive ion etching have been employed for the improvement of etching process. In this work, inductively coupled plasma reactive ion etching (ICPRIE) system was adopted for the improvement of etching process using MgO thin films and etching gas mixes of $CH_4$/Ar and $CH_4$/$O_2$/Ar have been employed. The etch rates are measured by a surface profilometer and etch profiles are observed using field emission scanning emission microscopy (FESEM). The effects of gas concentration and etch parameters such as coil rf power, dc-bias voltage to substrate, and gas pressure on etch characteristics will be systematically explored.

  • PDF

초경소재 선정을 위한 고속가공의 엔드밀 성능 평가 (Performance Evaluation on the Endmill of High Speed Machining for Selection of Tungsten Carbide (WC-Co) Material)

  • 권동희;김정석;김민욱;정영근;강명창
    • 한국분말재료학회지
    • /
    • 제15권5호
    • /
    • pp.359-364
    • /
    • 2008
  • To satisfy the demand of higher cutting performance, mechanical properties with tungsten carbide (WC-Co) tool materials were investigated. Hardness and transverse rupture strength with WC grain size, Co content and density were measured. Compared to H, K, and S manufacture maker as tungsten carbide (WC-Co) tool materials were used for high-speed machining of end-milling operation. The three tungsten carbide (WC-Co) tool materials were evaluated by cutting of STD 11 cold-worked die steel (HRC25) under high-speed cutting condition. Also, tool life was obtained from measuring flank wear by CCD wear measuring system. Tool dynamometer was used to measure cutting force. The cutting force and tool wear are discussed along with tool material characteristics. Consequently, the end-mill of K, H manufacture maker showed higher wear-resistance due to its higher hardness, while the S maker endmill tool showed better performance for high metal removal.

세 가지 매체형 분쇄기를 이용한 분쇄공정에서 다양한 실험 조건에 대한 입자형상변화 (Particle Morphology via Change of Ground Particle for Various Experimental Conditions During a Grinding Process by Three Kinds of Media Mills)

  • 사꾸라기시오리;보르암갈란;이재현;최희규
    • 한국입자에어로졸학회지
    • /
    • 제11권1호
    • /
    • pp.9-19
    • /
    • 2015
  • This study investigated the effects of ball mill operation condition on the morphology of raw powders in the dry-type milling process using three types of ball mills traditional ball mill, stirred ball mill and planetary ball mill. Furthermore, since spherical powders offer the best combination of high hardness and high density, the optimum milling condition to produce sphere-shaped powders was studied. The applied rotation speed ranged from 200rpm (low rotation speed) to 700rpm (high rotation speed). The used ball size ranged from 1mm to 5mm. The metal powder morphology was studied using SEM, XRD and PSA. The aimed spherical powders could be obtained under the optimum experimental conditions: traditional ball mill(200rpm, 1mm ball), planetary ball mill (500rpm, 1mm ball) and also planetary ball mill (700rpm, 1 and 3 mm ball). The results show to the development of new material using spherical type copper powder/CNT composites for air-craft and automotive applications.