• 제목/요약/키워드: High separation efficiency

검색결과 409건 처리시간 0.032초

Platinum Decoration of a 3D Oxidized Graphitic Carbon Nitride/Graphene Aerogel for Enhanced Visible-Light Photocatalytic Hydrogen Evolution

  • Thi Kieu Oanh Nguyen;Thanh Truong Dang;Tahereh Mahvelati-Shamsabadi;Jin Suk Chung
    • Korean Chemical Engineering Research
    • /
    • 제61권4호
    • /
    • pp.627-634
    • /
    • 2023
  • Graphitic carbon nitride (g-C3N4) has attracted considerable attention since its discovery for its catalysis of water splitting to hydrogen and oxygen under visible light irradiation. However, pristine g-C3N4 confers only low photocatalytic efficiency and requires surface cocatalysts to reach moderate activity due to a lack of accessible surface active sites. Inspired by the high specific surface area and superior electron transfer of graphene, we developed a strongly coupled binary structure of graphene and g-C3N4 aerogel with 3D porous skeleton. The as-prepared 3D structure photocatalysts achieve a high surface area that favors efficient photogenerated charge separation and transfer, enhances the light-harvesting efficiency, and significantly improves the photocatalytic hydrogen evolution rate as well. The photocatalyst performance is observed to be optimized at the ratio 3:7 (g-C3N4:GO), leading to photocatalytic H2 evolution of 16125.1 mmol. g-1. h-1 under visible light irradiation, more than 161 times higher than the rate achieved by bulk g-C3N4.

Development of an Automated Diffusion Scrubber-Conductometry System for Measuring Atmospheric Ammonia

  • Lee, Bo-Kyoung;Lee, Chong-Keun;Lee, Dong-Soo
    • Bulletin of the Korean Chemical Society
    • /
    • 제32권6호
    • /
    • pp.2039-2044
    • /
    • 2011
  • A semi-continuous and automated method for quantifying atmospheric ammonia at the parts per billion level has been developed. The instrument consists of a high efficiency diffusion scrubber, an electrolytic on-line anion exchange device, and a conductivity detector. Water soluble gases in sampled air diffuse through the porous membrane and are absorbed in an absorbing solution. Interferences are eliminated by using an anion exchange devises. The electrical conductivity of the solution is measured without chromatographic separation. The collection efficiency was over 99%. Over the 0-200 ppbv concentration range, the calibration was linear with $r^2$ = 0.99. The lower limit of detection was 0.09 ppbv. A parallel analysis of Seoul air over several days using this method and a diffusion scrubber coupled to an ion chromatography system showed acceptable agreement, $r^2$ = 0.940 (n = 686). This method can be applied for ambient air monitoring of ammonia.

Treatment of organic dye solutions by electrodialysis

  • Majewska-Nowak, Katarzyna M.
    • Membrane and Water Treatment
    • /
    • 제4권3호
    • /
    • pp.203-214
    • /
    • 2013
  • Laboratory tests were performed to determine the efficiency of dye solution desalination by electrodialysis. The study involved anionic dye and mineral salt recovery by obtaining two streams from a salt and dye mixture - dye-rich solution and salt solution. A standard anion-exchange and cation-exchange membranes or monovalent selective anion-exchange membranes were used in the ED stack. It was found that the separation efficiency was strongly dependent on the dye molecular weight. The best results for standard ion-exchange membranes were achieved for the desalination of Direct Black solution. Furthermore, the obtained results implied that the application of monovalent selective anion-exchange membranes improved the recovery of dye and salt solutions - the dye concentration in the diluate remained constant irrespective of the molecular weight of anionic dyes, whereas the salt recovery remained very high (99.5%).

이중 원심력 집진장치를 이용한 분진-가스 동시 처리 (Simultaneous Control of Dust and Gases Using a Double Centrifugal Device)

  • 장정희;이주헌;조영민
    • 한국대기환경학회지
    • /
    • 제24권3호
    • /
    • pp.336-345
    • /
    • 2008
  • A large volume of work has been attempted to improve the separation efficiency of cyclone by establishing new design and optimum operation. An auxiliary device called Post Cyclone (PoC) has been introduced and tested in an earlier work (In order to reduce the emission of fine dust from the reverse flow cyclones). This work applies the PoC to remove the dust and gaseous elements using a centrifugal effect remained in the discharging flow over the cyclone. As a result of the experiment, the efficiency was found best at the high gas concentration and low inlet velocity.

공동현상을 고려한 펌프 인듀서 설계 (Design of Cavitation-Resistive Pump Inducer)

  • 정근화;안광운;이승배;김진화;강신형
    • 유체기계공업학회:학술대회논문집
    • /
    • 유체기계공업학회 2001년도 유체기계 연구개발 발표회 논문집
    • /
    • pp.185-190
    • /
    • 2001
  • The cavitation causes suction performance and efficiency of the high-speed pump to be reduced significantly To diminish these effects, the inducer has been used. Most of the inducer is designed at a maximum efficiency point of the pump, therefore suction performance drop due to effects of flow separation and inlet inverse flow is often observed at off-design point. The objective of this study is to find out the cavitation modes at various conditions by applying event detection technique and to design an inducer reducing cavitation. The pressure fluctuations at each cavitating condition were measured at inducer inlet and outlet locations using pressure transducers, which were located 90 degrees apart from each other to identify the cavitation modes. The time-frequency characteristics were analyzed by using Choi-williams distribution. In the second part of this paper, the inducer design method which uses nominal performance characteristic and onset condition of cavitation is introduced and applied to real situation.

  • PDF

온도변화가 CF/PEEK 적층재의 충격 후 굽힘강도에 미치는 영향 (The Effects of Temperature Change on the Bending Strength of CF/PEEK Laminates after Impact)

  • 양인영;정종안;나승우
    • 한국안전학회지
    • /
    • 제18권2호
    • /
    • pp.34-39
    • /
    • 2003
  • In this paper, when CF/PEEK laminates for high efficiency space structure are subjected to FOD(Foreign Object Damage), the effects of temperature change on the impact damages(interlaminar separation and transverse crack) of CF/PEEK laminates and the relationship between residual lift and impact damages are experimentally investigated. Composite laminates used in this experiment are CF/PEEK orthotropic laminated plates, which have two-interlaces [$0^{\circ}_4/90^{\circ}_8/0^{\circ}_4$]. A steel ball launched by the air gun collides against CF/PEEK laminates to generate impact damages. And then CF/PEEK specimens with impact damages are observed by a scanning acoustic microscope under room and high temperatures. In this experimental results, various relations are experimentally observed including the delamination area vs. temperature change, the bending strength vs. impact energy and the residual bending strength vs. impact damage of CF/PEEK laminates.

Recent advances in water and wastewater treatment using membranes with carbon nanotubes

  • Michal, Bodzek;Krystyna, Konieczny;Anna, Kwiecinska-Mydlak
    • Membrane and Water Treatment
    • /
    • 제13권6호
    • /
    • pp.259-290
    • /
    • 2022
  • Carbon nanotubes (CNTs), due to their excellent physical, chemical and mechanical properties and their ability to prepare new membranes with attractive properties, have found applications in water and wastewater technology. CNT functionalization, which involves the introduction of different types of functional groups into pure CNTs, improves the capabilities of CNT membranes for water and wastewater treatment. It turns out that CNT-based membranes have many advantages, including enhanced water permeability, high selectivity and anti-fouling properties. However, their full-scale application is still limited by their high cost. With their tremendous separation efficiency, low biofouling potential and ultra-high water flux, CNT membranes have the potential to be a leading technology in water treatment in the future, especially in desalination.

미생물 활성물질이 내재된 담체를 이용한 생물반응조의 성능 평가 (Performance Evaluation of a Bioreactor Partially Packed with Porous Media Containing a MA (Microorganism Activator))

  • 박종훈;홍석원;최용수;이상협;김승준;강선홍
    • 상하수도학회지
    • /
    • 제21권1호
    • /
    • pp.47-55
    • /
    • 2007
  • The waste water treatment facility at rural and mountainous region in catchment areas of dams should be small scale. The wastewater treatment facility of small scale has some specification as follows;1)simple process, 2)low maintenance cost, and 3)high removal efficiency. So, we developed the bioreactor which can be satisfied with the specification of small scale waste water treatment facility. The bioreactor consisted of the anoxic and oxic zone. The two zones were effectively separated by cone type baffle. By the effective separation through CTB, the nitrification and denitrification reaction occurred effectively. Therefore, the removal efficiency of total nitorgen (TN) increased compared to other types of baffle. And, we put into the bio activated media in oxic zone to increase the concentration and activity of microbiology. The media contained the components which were made of many kinds of the minerals to increase the activity of microbiology. Additionally, we observed that the phosphate removal efficiency increased by bio activated media. This is resulted from the coagulation-sedimentation reaction by mineral in components. The average removal efficiencies of TN and TP during Run 2 were 69 and 89% which were 4 and 25% higher than those during Run 1 without the MA, respectively. For BOD, COD, SS and TKN, the average removal efficiencies at Run 2 were slightly higher than those at Run 1. Therefore, we could maintain the high concentration and high activity of microbiology through bioreactor developed in this study. And the removal efficiency of TN and TP increased.

Determination of Toner Content by Diffuse Reflectance for Office Paper Recycling Studies

  • Oki, Tatsuya;Owada, Shuji;Yotsumoto, Hiroki;Tanuma, Hirokazu
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2001년도 The 6th International Symposium of East Asian Resources Recycling Technology
    • /
    • pp.111-116
    • /
    • 2001
  • Waste office paper, photocopied or laser printed, has recently increased along with office automatization. In waste office paper, toner ink is used as the printing medium in place of conventional oil ink. Since toner ink cannot be saponificated by alkali and be decolored by bleaching, different from the case of oil ink, toner remains on regenerated paper as black specks. Although cascade recycling of waste office paper is compelled at present, the demand for low-grade paper is limited. From such circumstances, a new separation process for waste office paper is demanded to achieve parallel recycling. At the first stage of separation studies, the sharpness of separation is evaluated using small separators to obtain fundamental data. In a lab-scale separator, the sample amount of one feed is generally a few grams. However, the sample amount used for brightness, ERIC, and image analysis that are generally used to evaluate the efficiency of deinking are not small for lab-scale tests of these analyses. This paper describes an investigation of a sheet preparation method by a small amount of sample under 0.5g and compares the precision of toner content determination of spectroscopic analysis and image analysis from the viewpoint of separation evaluation. The easiness and convenience of the operation using only general-purpose equipments has also been set as a principle purpose. From the viewpoint of an analysis that yields high precision with a small amount of sample in short time, the method calculating the absorption coefficient from diffuse reflectance in the visible region is the most rational method in this study.

  • PDF

자력선별방식을 이용한 고순도 실리카 정제 최적화를 위한 전산모사 (Design simulation of magnetic separator for purification of silica sand)

  • 최현진;조영민;이준엽;김상범
    • 한국산학기술학회논문지
    • /
    • 제17권1호
    • /
    • pp.181-187
    • /
    • 2016
  • 실리카는 다양한 산업용 소재로 이용되고 있으며, 특히 불순물의 함량이 적은 고품위 실리카는 전자소재인 LCD 및 OLED 등의 원재료로 큰 주목을 받고 있다. 본 연구에서는 물리적 정제방법인 자력선별 방식에 의한 실리카의 고순도화 연구를 위해 세 가지 형태의 자력 선별기를 고려하여 $SiO_2$$Fe_2O_3$를 대상으로 전산모사를 실시하였다. 전산모사 결과, $Fe_2O_3$ 입자를 끌어당길 수 있는 유효면적이 자력선별의 매우 중요한 변수로 작용함을 확인하였으며, $SiO_2$ 입자의 손실율 및 $Fe_2O_3$ 입자의 제거율은 입자의 크기와 유속에 매우 큰 영향을 받음을 알 수 있었다. 본 연구에서는 입자크기 $10{\mu}m$, 유속 0.2 m/s의 조건에서 가장 우수한 분리효율의 확보가 가능하였으며, 자력선별기의 구성에 있어 입자의 크기, 유속, 자속 밀도가 매우 핵심적인 변수임을 증명하였다.