• Title/Summary/Keyword: High rotational Speed

Search Result 448, Processing Time 0.021 seconds

Effect of Disk Rotational Speed on Contamination Nano Particles Generated in a Hard Disk Drive (하드 디스크 드라이브 회전수 변화가 드라이브 내 나노 오염 입자 발생에 미치는 영향)

  • Lee, Dae-Young;Hwang, Jung-Ho;Bae, Gwi-Nam
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.28 no.8 s.227
    • /
    • pp.976-983
    • /
    • 2004
  • In high-density hard disk drives, the slider should be made to fly close to the magnetic recording disk to generate better signal resolution and at an increasingly high velocity to achieve better data rate. The slider disk interaction in CSS (contact-start-stop) mode is an important source of particle generation. Contamination particles in the hard disk drive can cause serious problems including slider crash and thermal asperities. We investigated the number and the sizes of particles generated in the hard disk drive, operating at increasing disk rotational speeds, in the CSS mode. CNC (condensation nucleus counter) and PSS (particle size selector) were used for this investigation. In addition, we examined the particle components by using SEM (scanning electron microscopes), AES (auger electron spectroscopy), and TOF-SIMS (time of flight-secondary ions mass spectrometry). The increasing disk rotational speed directly affected the particle generation by slider disk interaction. The number of particles that were generated increased with the disk rotational speed. The particle generation rate increased rapidly at motor speeds above 8000 rpm. This increase may be due to the increased slider disk interaction. Particle sizes ranged from 14 to 200 nm. The particles generated by slider disk interaction came from the lubricant on the disk, coating layer of the disk, and also slider surface.

Development of Asynchronus High Speed Turbo Blower with Gas Bearing Supports (비동기형 고속모터를 사용한 공기부양식 터보블로워의개발)

  • Park, Ki-Cheol;Yoon, Ju-Shik;Lee, Ki-Ho;Kim, Kyung-Soo;Kim, Dong-Kwon;Kim, Seung-Woo
    • 유체기계공업학회:학술대회논문집
    • /
    • 2003.12a
    • /
    • pp.324-329
    • /
    • 2003
  • Asynchronus high speed turbo blower of 100HP class with gas bearing supports is developed. The high speed motor is cooled by air and it's RPM is controlled by high frequency inverter to adjust inlet flow rate. Product family is ranged from 50 to 200HP and covered by three frames. Highly efficient impeller is designed and proved by performance test on system. Overall measured system efficiency is 82% including motor and inverter. The motor efficiency is about 95%. It is designed to guarantee to operate at ambient temperature of 35 Deg.C and max 45 DegC. Gas bearing with high load capacity is developed to support heavy rotor on low rotational speed.

  • PDF

Selection of Machining Inclination Angle of Tool Considering Tool Wear in High Speed Ball End Milling (고속 볼앤드밀링에서 공구마모를 고려한 공구의 가공경사각 선정)

  • Ko, Tae-Jo;Jung, Hoon;Kim, Hee-Sool
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.15 no.9
    • /
    • pp.135-144
    • /
    • 1998
  • High speed machining is a key issue in die and mold manufacturing recently. Even though this technology has great potential of high productivity. tool wear accelerated by high cutting speed to the hardened materials is other barrier. In this research, we attempted to reduce tool wear by considering tool inclination angle between tool and workpiece. The boundary lines describing machined sculptured surfaces were represented by both of cutting envelop condition and the geometric relationship of successive tool paths. Chip cross section, and cutting length could be obtained from the calculated cutting edge and the rotational engagement angle. From the simulation results, machining inclination angle of tool of $15^\circ$ was good enough from the point of tool wear and cutting force, and this value was verified through the cutting experiment of high speed ball end milling.

  • PDF

Spray Characteristics of the Rotating Fuel Nozzle with Orifice Geometry (회전연료노즐 형상변경에 따른 분무특성)

  • Jang, Seong-Ho;Choi, Hyun-Kyung;Lee, Dong-Hun;You, Gyung-Won;Choi, Seong-Man
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.05a
    • /
    • pp.240-243
    • /
    • 2008
  • An experimental study was conducted to understand spray characteristics of rotating fuel nozzle by using high speed rotational system. The experimental apparatus consist of a fuel injection system, high speed rotational system, and acrylic case. The test is performed with several diameters and number of injection orifices. Spray characteristics such as droplet size and velocity are measured by PDPA(Phase Doppler Particle Analyzer). From the test results, we could understand the spray characteristics of rotating fuel nozzle with orifice number and diameter.

  • PDF

Performance Test of the 30-ton Class Liquid Rocket Engine Turbopump Turbine (30톤급 액체로켓 엔진용 터보펌프 터빈 성능시험)

  • Jeong, Eun-Hwan;Park, Pyun-Goo;Kim, Jin-Han
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.12 no.1
    • /
    • pp.1-6
    • /
    • 2008
  • Performance test of the 30-ton class liquid rocket engine turbopump turbine has been conducted using high pressure cold air. Overall performance of the two kinds of turbine rotors - rotor with knife-edged L.E blades and with rounded L.E blades - has been measured for various rotational speed and turbine pressure ratio. The effect of rotational speed and turbine pressure ratio on the turbine axial force behavior also has been measured in parallel. Test results have revealed that the efficiency of knife edged L.E. turbine is a little bit higher than that of rounded L.E. turbine. The axial force of the turbine varied linearly with respect to rotational speed and its magnitude largely depended on turbine pressure ratio.

A preliminary study on the surface finishing of a hard disk slider using magnetorheological (MR) fluid (자기유변유체를 이용한 하드디스크 슬라이더의 표면연마를 위한 기초연구)

  • Jung, B.S.;Jang, K..I.;Min, B..K.;Lee, S.J.;Seok, J.
    • Transactions of the Society of Information Storage Systems
    • /
    • v.3 no.2
    • /
    • pp.66-72
    • /
    • 2007
  • Surface finishing using magnetorheological (MR) fluid is useful to finish small but not too small workpieces such as those in a few millimeter scale. However, due to the high surface hardness, this finishing process does not seem to be suit for applying to a hard disk slider. In this work, a preliminary study is performed on the finishing of the hard disk slider surface with a mixture of an MR fluid and diamond powder. During a wheel type MR finishing process, centrifugal force is found to be a major factor to cause a reduction in material remove rate (MRR), which is supported by a theoretical model. To facilitate this founding, the rotational speed of tool is confined to 500rpm while a rectilinear alternating motion with the mean speed, which is equivalent to the rotational speed, is additionally applied to the workpieces. As a consequence, MRR of about 2 times of the sole rotational case is obtained. This paper shows that MR finishing process can be used to polish a hard material in millimeter scale efficiently by controlling the speeds of the tool and the workpiece.

  • PDF

A Study on Cutting Conditions and Finishing Machining of Si Material Using Laser Assisted Module (레이저 보조 모듈을 이용한 Si 소재의 절삭조건 및 보정가공에 관한 연구)

  • Young-Durk Park
    • Design & Manufacturing
    • /
    • v.17 no.2
    • /
    • pp.15-21
    • /
    • 2023
  • In this study, a diamond turning machine and a laser-assisted machining module were utilized for the complex combined cutting of aspheric shapes and fine patterns on the surface of high-hardness brittle material, silicon. The analysis of material's form accuracy and corrective machining was conducted based on key factors such as laser output, rotational speed, feed rate, and cutting depth to achieve form accuracy below 1 ㎛ and surface roughness below 0.1 ㎛. The cutting condition and corrective machining methods were investigated to achieve the desired form accuracy and surface roughness. The rotational speed of the spindle and the linear feed rate of the diamond turning machine were varied in five stages for the cutting condition test. Surface roughness and form accuracy were measured using both a contact surface profilometer and a non-contact surface profilometer. The experimental results revealed a tendency of improved surface roughness with increased rotational speed of the workpiece, and the best surface roughness and form accuracy were observed at a feed rate of 5 mm/min. Furthermore, based on the cutting condition experiments, corrective machining was performed. The experimental results demonstrated an improvement in form accuracy from 0.94 ㎛ to 0.31 ㎛ and a significant reduction in the average value of the surface roughness curve from 0.234 ㎛ to 0.061 ㎛. This research serves as a foundation for future studies focusing on the machinability in relation to laser output parameters.

Analysis of Photosynthetic Photon Flux by Prototype of Rotational Lighting System for Plant Factory (식물공장을 위한 회전형 조명시스템 시제품의 광합성유효광양자속 분석)

  • Lee, Won-Sub;Kim, Sung-Gaun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.2
    • /
    • pp.529-534
    • /
    • 2013
  • Rotational lighting system for plant factory is the way to decrease high installation cost of the existing lighting system. A few of LEDs are used at the rotational lighting system in comparison with the existing lighting system to supply artificial lights to crops. At rotational lighting system, the manufacturing cost becomes very low by comparing with the existing lighting system. In this paper, the photosynthetic photon flux (PPF) is investigated in order that plants may grow. And PPF is analyzed with the rotational speed of blade and LED output by using the rotational lighting system prototype and quantum sensor. It is confirmed that constant PPF value of $200{\mu}mol{\cdot}m^{^-2}{\cdot}s^{^-1}$ is supplied with the blade rotation speed of 20rpm and LED output of IN 73%, CENTER 37% and OUT 50%. By comparing with the lighting system of existing plant factory, there is no difficulty to supply the light needed to grow plants by rotating a few of LEDs.

Experimental Assessment with Wind Turbine Emulator of Variable-Speed Wind Power Generation System using Boost Chopper Circuit of Permanent Magnet Synchronous Generator

  • Tammaruckwattana, Sirichai;Ohyama, Kazuhiro;Yue, Chenxin
    • Journal of Power Electronics
    • /
    • v.15 no.1
    • /
    • pp.246-255
    • /
    • 2015
  • This paper presents experimental results and its assessment of a variable-speed wind power generation system (VSWPGS) using permanent magnet synchronous generator (PMSG) and boost chopper circuit (BCC). Experimental results are obtained by a test bench with a wind turbine emulator (WTE). WTE reproduces the behaviors of a windmill by using servo motor drives. The mechanical torque references to drive the servo motor are calculated from the windmill wing profile, wind velocity, and windmill rotational speed. VSWPGS using PMSG and BCC has three speed control modes for the level of wind velocity to control the rotational speed of the wind turbine. The control mode for low wind velocity regulates an armature current of generator with BCC. The control mode for middle wind velocity regulates a DC link voltage with a vector-controlled inverter. The control mode for high wind velocity regulates a pitch angle of the wind turbine with a pitch angle control system. The hybrid of three control modes extends the variable-speed range. BCC simplifies the maintenance of VSWPGS while improving reliability. In addition, VSWPGS using PMSG and BCC saves cost compared with VSWPGS using a PWM converter.

Numerical Study on The Effects of Blade Leading Edge Shape to the Performance of Supersonic Rotors (초음속 회전익의 앞전 형상이 공력 성능에 미치는 효과에 대한 수치적 연구)

  • Park, Kicheol
    • 유체기계공업학회:학술대회논문집
    • /
    • 2001.11a
    • /
    • pp.149-155
    • /
    • 2001
  • Recently, it is required to design higher stage pressure ratio compressor while maintaining equal adiabatic efficiency. To increase the stage pressure ratio, blade rotational speed or diffusion factor should be increased. In the case of increasing rotational speed, relative speed of flow at blade leading edge is well supersonic. In supersonic blade, total pressure loss is mainly due to shock wave and blade leading edge thickness should be very thin to minimize the shock wave loss. As a result, the blade is like to be week in terms of mechanical strength and the manufacturing cost is very high because NC machining is necessary. It is also one of big hurdle to overcome to make small compressor. In this paper, the effects of blade leading edge to the performance of supersonic blade In terms of total pressure loss. The efficiency of already known method to make thin blade leading edge from the casted blade with rather thick leading edge thickness is also assessed.

  • PDF