• Title/Summary/Keyword: High rise building

Search Result 1,762, Processing Time 0.031 seconds

Optimization of Multiple Tower Cranes and Material Stockyards Layout (다중 양중장비와 자재 야적 위치의 최적 결정을 위한 모델 개발)

  • Kim, Kyong-Ju;Kim, Kyoung-Min;Lee, Sang-Kyu
    • Korean Journal of Construction Engineering and Management
    • /
    • v.10 no.6
    • /
    • pp.127-134
    • /
    • 2009
  • This study aims to provide an optimal model for the layout of multiple tower cranes and material stockyards which have multiple candidate positions. In a high-rise building construction, the positional allocation of tower cranes and material stockyard has an effect on the travel time of material hauling. In addition, in case of using multiple tower cranes, specific location of a tower crane allocated to each material determines the efficiency of the works. Current optimal model limited to the optimization of position of single tower crane and material stockyards. This study suggests optimal model both for the positions of multiple tower cranes and material stockyards. Layout of multiple tower cranes requires additional allocation of each crane to each material hauling and control on the minimum distance between tower cranes. This optimization model utilizes genetic algorithm to deal with complex interaction on the candidate positions of multiple tower cranes, material stockyards, and types of materials. In order to identify its utility, case study was performed.

A Study on the improvement of current construction safety management system (건설공사 안전관리 개선방안에 관한 연구)

  • Jung, Jae-Woo;Kim, Tae-Yang;Kim, Hang-Su;Cho, Young-Jun
    • Proceedings of the Korean Institute Of Construction Engineering and Management
    • /
    • 2007.11a
    • /
    • pp.691-694
    • /
    • 2007
  • Today, current society is unceasingly changing. This phenomenon accelerate building to high-rise and complex. According to that, to build a construction structure, the safety management facilities, safety education & training for employee and consciousness for safety should be set aside. But, the occurrence of safety injury is not decreasing now. Therefore, to reduce safety injury and to enhance the consciousness of employee for safety, redesign of safety management system, reallocation of safety liability for privity, revise of safety educational system were suggested in this paper.

  • PDF

Seismic performance of R/C structures under vertical ground motion

  • Bas, Selcuk;Lee, Jong-Han;Sevinc, Mukadder;Kalkan, Ilker
    • Computers and Concrete
    • /
    • v.20 no.4
    • /
    • pp.369-380
    • /
    • 2017
  • The effects of the vertical component of a ground motion on the earthquake performances of semi-ductile high-rise R/C structures were investigated in the present study. Linear and non-linear time-history analyses were conducted on an existing in-service R/C building for the loading scenarios including and excluding the vertical component of the ground motion. The ratio of the vertical peak acceleration to the horizontal peak acceleration (V/H) of the ground motion was adopted as the main parameter of the study. Three different near-source earthquake records with varying V/H ratio were used in the analyses. The linear time-history analyses indicated that the incorporation of the vertical component of a ground motion into analyses greatly influences the vertical deflections of a structure and the overturning moments at its base. The lateral deflections, the angles of rotation and the base shear forces were influenced to a lesser extent. Considering the key indicators of vertical deflection and overturning moments determined from the linear time-history analysis, the non-linear analyses revealed that the changes in the forces and deformations of the structure with the inclusion of the vertical ground motion are resisted by the shear-walls. The performances and damage states of the beams were not affected by the vertical ground motion. The vertical ground motion component of earthquakes is markedly concluded to be considered for design and damage estimation of the vertical load-bearing elements of the shear-walls and columns.

Design Strength of Coupled Shear Wall System according to Variation of Strength and Stiffness of Coupled Shear Wall (병렬전단벽의 강도와 강성이 커플링보의 설계내력에 미치는 영향)

  • Yoon, Tae-Ho;Kim, Jin-Sang
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.10
    • /
    • pp.743-750
    • /
    • 2016
  • In this research, the effects of the strength and stiffness of shear walls on the design strength of coupling beams are studied in the shear wall-coupling beam structural system widely used as the lateral-drift resistant system of high-rise buildings. The results show that the design strength of the coupling beams decreases with decreasing concrete strength and core wall thickness, but the shape remains unchanged. In all six models, the design strength of the coupling beams has the largest value at the 10~15th floors in a 40-story building. In other words, the design strength of the coupling beams has the largest value at 0.25H~0.375H where the inflection point exists. The thicker the walls, the smaller the change in the member forces. The thickness of the coupled shear walls has more influence on the design strength of the coupling beams than the concrete strength.

Optimal wind-induced load combinations for structural design of tall buildings

  • Chan, C.M.;Ding, F.;Tse, K.T.;Huang, M.F.;Shum, K.M.;Kwok, K.C.S.
    • Wind and Structures
    • /
    • v.29 no.5
    • /
    • pp.323-337
    • /
    • 2019
  • Wind tunnel testing technique has been established as a powerful experimental method for predicting wind-induced loads on high-rise buildings. Accurate assessment of the design wind load combinations for tall buildings on the basis of wind tunnel tests is an extremely important and complicated issue. The traditional design practice for determining wind load combinations relies partly on subjective judgments and lacks a systematic and reliable method of evaluating critical load cases. This paper presents a novel optimization-based framework for determining wind tunnel derived load cases for the structural design of wind sensitive tall buildings. The peak factor is used to predict the expected maximum resultant responses from the correlated three-dimensional wind loads measured at each wind angle. An optimized convex hull is further developed to serve as the design envelope in which the peak values of the resultant responses at any azimuth angle are enclosed to represent the critical wind load cases. Furthermore, the appropriate number of load cases used for design purposes can be predicted based on a set of Pareto solutions. One 30-story building example is used to illustrate the effectiveness and practical application of the proposed optimization-based technique for the evaluation of peak resultant wind-induced load cases.

Analysis of Indoor Air & thermal environment with Hybrid Ventilation system during summer (하계 공동주택 하이브리드 환기시스템 적용에 따른 실내공기 및 열 환경 평가)

  • Kim, Sang-Jin;Kim, Eun-Soo;Kim, Tae-Yeon;Leigh, Seung-Bok
    • Proceedings of the SAREK Conference
    • /
    • 2006.06a
    • /
    • pp.387-392
    • /
    • 2006
  • The recent on indoor air problem has led to many studies on the methods and effects of ventilation for better indoor air quality. Although natural ventilation is the most effective and energy-saving method in residental housings, the small size of openable window has been a problem in high-rise residential buildings to ventilate only through natural ventilation. Consequently, the installation of mechanical ventilation system has been a requirement in residential buildings, and has caused other problems such as increase of energy consumption and SBS. Hybrid ventilation which uses forces of both natural and mechanical power has been introduced to solve the problem of increase in energy consumption with natural ventilation. In this paper, two types of hybrid ventilation systems in residential building were introduced. One type was with natural ventilation through vent grille in the window, and another type was with natural ventilation through ceiling duct while both types used mechanical ventilation system with the outlets. The indoor temperature distribution and pollution density distribution in summer while operating the ceiling air conditioner were analyzed through CFD simulation. In this paper, the optimal location of diffusers to achieve thermal comfort would be proposed.

  • PDF

A Study on the Deformation Characteristics of the Roof Signboard Size in Wind Pressure Formation (풍압 형성에 따른 옥상광고판 크기별 특성에 관한 연구)

  • Hong, Ji-Wan
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.1
    • /
    • pp.401-408
    • /
    • 2019
  • This study numerically examined the maximum wind pressure distribution of a billboard on the roof of a middle-rise building. The deformation caused by the maximum wind pressure was examined. For the numerical analysis, the signboard was assumed to be installed on $(b)20m{\times}(d)10m{\times}(h)$ buildings. The maximum wind pressure was measured using four models with the standard model and different sizes of the signboard. The numerical analysis showed that the horizontal deformation predominantly occurs as the shape of the signboard becomes closer to a rectangle, and high wind pressure and deformation occur at the corners of both ends. As the height of the signboard increases, vertical deformation predominantly occurs, and static pressure forms on the backside. When the height is lower than the width of the signboard, the wind pressure is concentrated on the center of the roof. Therefore, the distribution of the maximum wind pressure is stable, and the effect of the wind pressure is relatively low as the height-to-width ratio approaches 1.

Design of Busbar Joint Condition Monitoring System (부스바 접촉부 체결상태 모니터링 시스템 설계)

  • Jeong, Sung-Hak;Lee, Young-Dong
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2016.10a
    • /
    • pp.823-824
    • /
    • 2016
  • In general, distribution board, panel board and motor control center can be installed over a wide area such as residence of group, building, schools, factories, ports, airports, water service and sewerage, substation and heavy industries that are used to supply converts the voltages extra high voltage into optimal voltage. There are electrical accidents due to rise of contact temperature, loose contact of bus bar, deterioration of the contact resistance, overtemperatue of the bus bars. In this paper, we propose bus bar joints monitoring system with loose connection of bus bar, measuring the joint resistance of busbars and monitoring internal and external heat. The proposed system can be reduced the electrical accidents by maintenance of busbar joints and the temperature of the conductive contact surface of busbars.

  • PDF

A Study on Establishment of Performance-Based Design Direction through Analysis of Expert Survey (전문가 설문조사를 통한 국내 성능위주설계 개선 방향설정에 관한 연구)

  • Jeong, Hye-Min;Hong, Won-Hwa;Son, Jong-Yeong;Jeon, Gyu-Yeob
    • Journal of the Architectural Institute of Korea Planning & Design
    • /
    • v.34 no.2
    • /
    • pp.23-31
    • /
    • 2018
  • In recent years, as the development of construction technology and population increase, buildings are becoming more complex and high-rise. These large scale buildings are difficult to secure fire and evacuation safety when fire occurs. So it is necessary to prepare specific measures. According to this situation, in 2011, Republic of Korea officially launched Performance-based Design in "Fire-fighting system Installation business Act". But even 6 years passed since the enforcement, there are still faces manifold problems in the course of implementation. In order to examine the necessary improvements, in this study, I conducted interviews and questionnaires with experts, investigated the improvement items under current laws. And draw up a measures for that items. The subjects of the survey were fire-fighting officer, professional engineer fire fighting, fire protection planner and professor in Daegu. As a result of twice surveys, a total of 19 items are derived. And then compared and analyzed the criteria of overseas countries, and suggested improvement directions for final items. In addition, conducted a third questionnaire survey on the proposed improvement direction to verify the appropriateness of the alternative. The results of this study will be used as basic data to deal with the general problems of performance-based design in future, and further study on each item will be needed.

Multi-Family Housing Block Design Strategy Development by BIM-based Energy Performance Analysis - focusing on the Block Types and the Variations in Stories - (BIM 기반 에너지성능분석을 통한 공동주택의 주동 설계 전략개발 - 주동타입 및 층수 변화를 중심으로 -)

  • Jun, Jae-Hong;Park, hye-Jin;Lee, Kweon-Hyung;Choo, Seoung-Yeon
    • Journal of the Architectural Institute of Korea Planning & Design
    • /
    • v.34 no.2
    • /
    • pp.3-11
    • /
    • 2018
  • Korea has achieved a rapid economic development and with the increase in population and national income and the expansion of social and economic activities, energy consumption has rapidly increased too. Energy consumption per head has constantly increased and currently, power consumption per head is 7.5 times bigger than in 1985. Buildings occupy 25% of total energy consumption and especially, 50% of total energy is consumed for heating and cooling. In this situation, multi-family housing, which has constantly been increased, has an energy saving rate of 1.9%, which is the lowest level and this makes the government's energy policy for sustainable energy system development useless. Besides, energy consumption leads to secondary problems, such as air, water and marine pollution and heat pollution and wastewater/drainage and the increased use of fossil fuel is a fundamental reason for ozone layer destruction and global warming. Therefore, efficient energy consumption plans are required. This study aims to analyze energy performance in each block type of high-rise and diversified multi-family housing that accounts for 60% of all the housing forms, depending on the variations in stories through BIM-based energy simulation. For this study, four representative block types were selected, based on the multi-family floor plan, which is certified for energy performance evaluation and they were applied to the floor plan of a multi-family house that is scheduled to be built. Then BIM modeling was conducted from the fifth story to the 40th story at an intervals of 5 stories and based on the finding, energy characteristics of each block type and energy performance depending on the variations in stories were analyzed. It is considered that this would serve as objective data for block type and block story decision of energy performance-based multi-family housing.