• 제목/요약/키워드: High reynolds number

검색결과 471건 처리시간 0.025초

On the Significance of Turbulence Models and Unsteady Effect on the Flow Prediction through A High Pressure Turbine Cascade

  • El-Gendi, M.M.;Lee, Sang-Wook;Son, Chang-Ho
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제35권7호
    • /
    • pp.938-945
    • /
    • 2011
  • Unsteady flow simulations through a transonic turbine vane were carried out for an isentropic Mach number of 1.02 and a Reynolds number of $10^6$. The main objective of the study is to investigate the effect of unsteadiness due to vortex shedding on the flow in transonic regime. The steady and the time-averaged unsteady results by employing three different turbulence models: shear stress transport (SST), k-${\omega}$, and ${\omega}$ Reynolds stress models were compared. The comparisons were emphasized on the isentropic Mach number along the blade and total pressure loss at the cascade exit. The results showed that both steady and unsteady calculations have good agreement with experimental data along the blade surface. However, at cascade exit, the unsteady calculations have much better agreement with experimental data than steady calculations. Based on these, we conclude that the unsteady flow calculations are essential for these types of problems.

유동변수 파라미터에 의한 혼합 내-외재적 열-유동장 수치해석 방법 연구 (A Study on Flowfield-Dependent Mixed Explicit-Implicit Method in Heat and Fluid Dynamics Problems)

  • 문수연;송창현;이충원
    • 대한기계학회논문집B
    • /
    • 제25권7호
    • /
    • pp.989-996
    • /
    • 2001
  • High-speed and low-speed flows are simulated numerically by flowfield-dependent mixed explicit-implicit (FDMEI) method. This algorithm depends on implicitness parameters of convection, diffusion, diffusion gradients, and source terms which are calculated from the changes of local Mach, Reynolds, Peclet, and Damkohler numbers between adjacent nodes. Convection phenomena or shock waves are resolved from Mach number-dependent implicitness parameters whereas diffusion or viscous actions are simulated by Reynolds number or Peclet number-dependent implicitness parameters. Fluctuation components of all variables are properly accommodated spatially and temporally in the FDMEI procedure. To illustrate, some benchmark example problems are presented for comparisons of the FDMEI results with other available data. These results appear to be encouraging and point toward the need for further investigations of the FDMEI theory.

Exploring the effects of speed and scale on a ship's form factor using CFD

  • Terziev, Momchil;Tezdogan, Tahsin;Demirel, Yigit Kemal;Villa, Diego;Mizzi, Simon;Incecik, Atilla
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제13권1호
    • /
    • pp.147-162
    • /
    • 2021
  • The problem of predicting a ship's form factor and associated scale effects has been subject to many investigations in recent years. In this study, an attempt is made to investigate whether the form factor is influenced by a change in the ship's speed by numerically modelling a geosim series of the KCS hull form by means of a RANS solver. The turbulence dependence of the problem is also studied by altering the closure model among three widely used approaches (the k-𝜔, k-𝜔 SST, and k-𝜀 models). The results show that at very low speeds (Froude numbers in the range of 0.02-0.06) the numerical model predicts changes in the form factor of a ship between 10% and 20%, depending on the turbulence model and scale factor choices. As the speed is increased further, the form factor exhibits little change, usually in the range of 1% or less. Simulations where the Reynolds number is changed by approximately two orders of magnitude, achieved by altering the value of viscosity, confirmed that the form factor can be considered Froude-dependent only for low speeds, predicting essentially identical values when high speed cases are considered.

진동하는 고 받음각 날개주위의 비정상 아음속 유동해석 (Analysis of Unsteady Subsonic Flow Around a High Angle of Attack of the Oscillating Airfoil)

  • 문지수;김재수
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2011년 춘계학술대회논문집
    • /
    • pp.434-440
    • /
    • 2011
  • Oscillating airfoil haw been challenged for the dynamic stalls of airfoil am wind turbines at high angle of attach. Especially, the pressure oscillation has a huge effect on noise generation, structure damage, aerodynamic performance am safety, because the flow has strong unsteadiness at high angle of attack. In this paper, the unsteady aerodynamics coefficients were analyzed for the oscillating airfoil at high angle of attack around two dimensional NACA0012 airfoil. The two dimensional unsteady compressible Navier-Stokes equation with a LES turbulent model was calculated by OHOC (Optimized High-Order Compact) scheme. The flow conditions are Mach number of 0.2 and Reynolds number of $1.2{\times}10^4$. The lift, drag, pressure distribution, etc. are analyzed according to the pitching oscillation. Unsteady velocity field, periodic vortex shedding, the unsteady pressure distribution, and the acoustic fields are analyzed. The effects of these unsteady characteristics in the aerodynamic coefficients are analyzed.

  • PDF

P2P1 유한요소를 이용한 LES (Large Eddy simulation using P2P1 finite element formulation)

  • 최형권;남영석;유정열
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 춘계학술대회논문집E
    • /
    • pp.386-391
    • /
    • 2001
  • A finite element code based on P2P1 tetra element has been developed for the large eddy simulation (LES) of turbulent flows around a complex geometry. Fractional 4-step algorithm is employed to obtain time accurate solution since it is less expensive than the integrated formulation, in which the velocity and pressure fields are solved at the same time. Crank-Nicolson method is used for second order temporal discretization and Galerkin method is adopted for spatial discretization. For very high Reynolds number flows, which would require a formidable number of nodes to resolve the flow field, SUPG (Streamline Upwind Petrov-Galerkin) method is applied to the quadratic interpolation function for velocity variables, Noting that the calculation of intrinsic time scale is very complicated when using SUPG for quadratic tetra element of velocity variables, the present study uses a unique intrinsic time scale proposed by Codina et al. since it makes the present three-dimensional unstructured code much simpler in terms of implementing SUPG. In order to see the effect of numerical diffusion caused by using an upwind scheme (SUPG), those obtained from P2P1 Galerkin method and P2P1 Petrov-Galerkin approach are compared for the flow around a sphere at some Reynolds number. Smagorinsky model is adopted as subgrid scale models in the context of P2P1 finite element method. As a benchmark problem for code validation, turbulent flows around a sphere and a MIRA model have been studied at various Reynolds numbers.

  • PDF

환형 캐스케이드 내 고정된 터빈 블레이드 및 슈라우드에서의 열/물질전달 특성 (II) - 끝단 필 슈라우드 - (Heat/Mass Transfer Characteristics on Stationary Turbine Blade and Shroud in a Low Speed Annular Cascade (II) - Tip and Shroud -)

  • 이동호;조형희
    • 대한기계학회논문집B
    • /
    • 제29권4호
    • /
    • pp.495-503
    • /
    • 2005
  • Experiments were conducted in a low speed stationary annular cascade to investigate local heat transfer characteristics on the tip and shroud and the effect of inlet Reynolds number on the tip and shroud heat transfer. Detailed mass transfer coefficients on the blade tip and the shroud were obtained using a naphthalene sublimation technique. The turbine test section has a single stage composed of sixteen guide vanes and blades. The chord length and the height of the tested blade are 150 mm and about 125 mm, respectively. The blade has flat tip geometry and the mean tip clearance is about $2.5{\%}$of the blade chord. The inlet flow Reynolds number based on chord length and incoming flow velocity is changed from $1.0{\times}10^{5}\;to\;2.3{\times}10^{5}.$ to investigate the effect of Reynolds number. Flow reattachment after the recirculation near the pressure side edge dominates the heat transfer on the tip surface. Shroud surface has very intricate heat/mass transfer distributions due to complex flow patterns such as acceleration, relaminarization, transition to turbulent flow and tip leakage vortex. Heat/mass transfer coefficient on the blade tip is about 1.7 times as high as that on the shroud or blade surface. Overall averaged heat/mass transfer coefficients on the tip and shroud are proportional to $Re_{c}^{0.65}\;and\;Re_{c}^{0.71},$ respectively.

고차 형상함수를 이용한 가스 미케니컬 페이스 시일의 윤활해석 (A Lubrication Analysis of Gas Mechanical Face Seals using a High-Order Shape Function)

  • 이안성;양재훈;최동훈
    • 한국윤활학회:학술대회논문집
    • /
    • 한국윤활학회 2001년도 제34회 추계학술대회 개최
    • /
    • pp.204-211
    • /
    • 2001
  • For the treatment of high compressibility number in the Reynolds equation, a new class of exponential high-order shape functions has been recently introduced in the literatures. In this paper a FE lubrication analysis method of high speed gas mechanical face seals is developed, implementing these shape functions. Their validity and usefulness are presented using 1-D gas bearing models. And a validation of developed 2-D analysis code is shown with a gas flat and spiral groove face seal models.

  • PDF

진원형 정수압 베어링의 해석 (Analysis of Cylindrical Hydrostatic Bearing)

  • 문호지;한동철
    • 한국윤활학회:학술대회논문집
    • /
    • 한국윤활학회 1989년도 제10회 학술강연회초록집
    • /
    • pp.94-99
    • /
    • 1989
  • This paper analyzes file stiffness, damping coefficient, friction force and flow coefficient of externally pressurized oil journal beating, including the effect of journal rotation according to the Sommerfeld number. This paper assumed that the oil in the whole pocket has constant pressure, and that the oil in the whole bearing region has constant viscosity, temperature and density. Reynolds equation is derived from Nuvier - Stokes equation and continuity equation. And solved bearing pressure by ADI method for whole bearing region and fitted with out flow rate of pocket region. The model for numerical simulation is hydro - static oil journal bearing for high-speed, high-accuracy lathe spindle.

  • PDF

고 레이놀즈 수에서의 축대칭 몰수체의 거칠기에 대한 수치연구 (Numerical Study on Roughness Effect for Axi-symmetry Submerged Body in High Reynolds Number)

  • 정태환;송형도;염종길;송성진;박선호
    • 해양환경안전학회지
    • /
    • 제24권2호
    • /
    • pp.246-252
    • /
    • 2018
  • 본 논문은 3차원 축대칭 몰수체에 대해 소스 코드가 공개된 OpenFOAM 4.0을 이용하여 첫 번째 격자의 높이와 레이놀즈 수에 따른 마찰저항 변화에 대해 연구하였다. 마찰저항 계산을 위해 경계조건, 수치조건을 정립하였다. 축대칭 물체의 3차원 효과로 인해 거칠기가 매우 작은 $12{\mu}m$에서도 부드러운 표면과 비교해 마찰저항이 다르게 계산되었다. 레이놀즈 수가 커질수록 경계층의 두께 증가가 감소되었으며 이로 인해 마찰저항의 증가량이 감소되었다. 첫 번째 격자의 크기인 y+에 대한 영향에 대해서도 검토하였다. 첫 번째 격자가 log layer에 위치하고 있지 않으면 마찰저항과 표면의 전단력이 과도하게 예측되는 것을 확인하였다. 이는 경계층이 두껍게 예측되어 난류에너지가 과도하게 예측되었기 때문으로 판단된다. 표면의 거칠기가 커질수록 경계층이 두꺼워지고 표면의 난류에너지가 증가되는 것을 확인하였다. 마찰저항을 정확하게 예측하기 위해서는 y+ 값, 거칠기 및 벽함수가 적절한 영역에 위치해야 함을 알 수 있었다.

Study on High Performance and Compact Absorber Using Small Diameter Heat Exchanger Tube

  • Yoon Jung-In;Phan Thanh Tong;Moon Choon-Geun;Kim Eun-Pil;Kim Jae-Dol;Kang Ki-Cheol
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제30권4호
    • /
    • pp.463-473
    • /
    • 2006
  • The effect of tube diameter on heat and mass transfer characteristics of absorber in absorption chiller/heater using LiBr solution as a working fluid has been investigated by both of numerical and experimental study to develop a high performance and compact absorber. The diameter of the heat exchanger tube inside absorber was changed from 15.88mm to 12.70mm and 9.52mm. In numerical study a model of vapor pressure drop inside tube absorber based on a commercial 20RT absorption chiller/heater was performed. The effect of tube diameter, longitudinal pitch, vapor Reynolds number, longitudinal pitch to diameter ratio on vapor pressure drop across the heat exchanger tube banks inside absorber have been investigated and found that vapor pressure drop decreases as tube diameter increases, longitudinal pitch increases, vapor Reynolds number decreases and longitudinal pitch to diameter ratio increases. In experimental study, a system includes a tube absorber, a generator, solution distribution system and cooling water system was set up. The experimental results shown that the overall heat transfer coefficient, mass transfer coefficient. Nusselt number and Sherwood number increase as solution flow rate increases. In both of study cases, the heat and mass transfer performance increases as tube diameter decreases. Among three different tube diameters the smallest tube diameter 9.52mm has highest heat and mass transfer performance.