• Title/Summary/Keyword: High resolution SAR images

Search Result 100, Processing Time 0.021 seconds

Estimation of Rice Growth Using RADARSTA-2 SAR Images at Seosan Region

  • Kim, Yihyun;Hong, Sukyoung;Lee, Kyoungdo;Jang, Soyeong
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.46 no.4
    • /
    • pp.237-244
    • /
    • 2013
  • Radar remote sensing is appropriate for monitoring rice because the areas where this crop is cultivated are often cloudy and rainy. Especially, Synthetic Aperture Radar (SAR) can acquire remote sensing information with a high temporal resolution in tropical and subtropical regions due to its all-weather capability. This paper analyzes the relationships between backscattering coefficients of rice measured by RADARSAT-2 SAR and growth parameters during a rice growth period. We examined the temporal variations of backscattering coefficients with full polarization. Backscattering coefficients for all polarizations increased until Day Of Year (DOY 222) and then decreased along with Leaf Area Index (LAI), fresh weight, and Vegetation Water Content (VWC). Vertical transmit and Vertical receive polarization (VV)-polarization backscattering coefficients were higher than Horizontal transmit and Horizontal receive polarization (HH)-polarization backscattering coefficients in early rice growth stage and HH-polarization backscattering coefficients were higher than VV-polarization backscattering coefficients after effective tillering stage (DOY 186). Correlation analysis between backscattering coefficients and rice growth parameters revealed that HH-polarization was highly correlated with LAI, fresh weight, and VWC. Based on the observed relationships between backscattering coefficients and variables of cultivation, prediction equations were developed using the HH-polarization backscattering coefficients.

Extraction of Water Body Area using Micro Satellite SAR: A Case Study of the Daecheng Dam of South korea (초소형 SAR 위성을 활용한 수체면적 추출: 대청댐 유역 대상)

  • PARK, Jongsoo;KANG, Ki-Mook;HWANG, Eui-Ho
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.24 no.4
    • /
    • pp.41-54
    • /
    • 2021
  • It is very essential to estimate the water body area using remote exploration for water resource management, analysis and prediction of water disaster damage. Hydrophysical detection using satellites has been mainly performed on large satellites equipped with optical and SAR sensors. However, due to the long repeat cycle, there is a limitation that timely utilization is impossible in the event of a disaster/disaster. With the recent active development of Micro satellites, it has served as an opportunity to overcome the limitations of time resolution centered on existing large satellites. The Micro satellites currently in active operation are ICEYE in Finland and Capella satellites in the United States, and are operated in the form of clusters for earth observation purposes. Due to clustering operation, it has a short revisit cycle and high resolution and has the advantage of being able to observe regardless of weather or day and night with the SAR sensor mounted. In this study, the operation status and characteristics of micro satellites were described, and the water area estimation technology optimized for micro SAR satellite images was applied to the Daecheong Dam basin on the Korean Peninsula. In addition, accuracy verification was performed based on the reference value of the water generated from the optical satellite Sentinel-2 satellite as a reference. In the case of the Capella satellite, the smallest difference in area was shown, and it was confirmed that all three images showed high correlation. Through the results of this study, it was confirmed that despite the low NESZ of Micro satellites, it is possible to estimate the water area, and it is believed that the limitations of water resource/water disaster monitoring using existing large SAR satellites can be overcome.

Hierarchical Land Cover Classification using IKONOS and AIRSAR Images (IKONOS와 AIRSAR 영상을 이용한 계층적 토지 피복 분류)

  • Yeom, Jun-Ho;Lee, Jeong-Ho;Kim, Duk-Jin;Kim, Yong-Il
    • Korean Journal of Remote Sensing
    • /
    • v.27 no.4
    • /
    • pp.435-444
    • /
    • 2011
  • The land cover map derived from spectral features of high resolution optical images has low spectral resolution and heterogeneity in the same land cover class. For this reason, despite the same land cover class, the land cover can be classified into various land cover classes especially in vegetation area. In order to overcome these problems, detailed vegetation classification is applied to optical satellite image and SAR(Synthetic Aperture Radar) integrated data in vegetation area which is the result of pre-classification from optical image. The pre-classification and vegetation classification were performed with MLC(Maximum Likelihood Classification) method. The hierarchical land cover classification was proposed from fusion of detailed vegetation classes and non-vegetation classes of pre-classification. We can verify the facts that the proposed method has higher accuracy than not only general SAR data and GLCM(Gray Level Co-occurrence Matrix) texture integrated methods but also hierarchical GLCM integrated method. Especially the proposed method has high accuracy with respect to both vegetation and non-vegetation classification.

Analysis of KOMPSAT-5 Orbit for Radargrammetry (레이더 측량기법 적용을 위한 다목적실용위성 5호 궤도 분석)

  • Lee, Hoon-Yol;Jang, So-Young
    • Korean Journal of Remote Sensing
    • /
    • v.24 no.4
    • /
    • pp.351-358
    • /
    • 2008
  • KOMPSAT-5 will be launched in 2010 carrying a SAR (Synthetic Aperture Radar) system to obtain high resolution images of the earth surface regardless of weather or solar condition. In this paper, the orbits of KOMPSAT-5 and the imaging modes of SAR were analyzed for radargrammetry, and the best image pairs were suggested. We set the pass number from the nearest orbit to a given ground point and selected image pairs for radargrarnmetry, with height sensitivity of parallax higher than 0.5 to achieve enough height resolution and with the value lower than 0.8 to avoid errors from geometric distortion. On the equator, for example, where the distance between two adjacent passes is fixed to 95 km, we solved the orbit geometry and found that the image pairs with the pass numbers of 3-2 and 5-3 are suitable for radargrarnmetry. As the examples with arbitrary latitude, we selected Daejeon and Sejong Antarctic stations and calculated the orbital elements by using STK software. Three image pairs (5-4, 7-5 and 8-5) were found suitable for radargrammetry at Daejeon while 10 pairs (8-6, 9-7, 10-7, 11-8, 12-8, 13-9, 14-9, 15-9, 15-10 and 15-11) at Sejong Antarctic station.

Synthetic Aperture Radar Target Detection Using Multi-Cell Averaging CFAR Scheme (다중 셀 평균 기반 CFAR 검출을 이용한 SAR 영상 표적 탐지 기법)

  • Song, Woo-Young;Rho, Soo-Hyun;Jung, Chul-Ho;Kwag, Young-Kil
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.21 no.2
    • /
    • pp.164-169
    • /
    • 2010
  • Since the range and Doppler resolution of the synthetic aperture radar(SAR) image becomes very high, the target detection accuracy can be significantly increased, but the computational burden is also increased. The conventional single-cell based CFAR detector performs the target detection on every single cell basis, thus it causes the serious increment of the computational load. In this paper, the improved two-step MCA-CFAR detector is proposed for the improvement of the target detection as well as the reduction of computational load: the first step is to use the MCA-CFAR, and the second step is to use the single-cell based CFAR detection in the expected target area for final decision. The performance of the proposed algorithm is compared with the conventional single-cell based CFAR and MCA-CFAR on SAR images.

The Application of the Next-generation Medium Satellite C-band Radar Images in Environmental Field Works

  • Han, Hyeon-gyeong;Lee, Moungjin
    • Korean Journal of Remote Sensing
    • /
    • v.35 no.4
    • /
    • pp.617-623
    • /
    • 2019
  • Numerous water disasters have recently occurred all over the world, including South Korea, due to global climate change in recent years. As water-related disasters occur extensively and their sites are difficult for people to access, it is necessary to monitor them using satellites. The Ministry of Environment and K-water plan to launch the next-generation medium satellite No. 5 (water resource/water disaster satellite) equipped with C-band synthetic aperture radar (SAR) in 2025. C-band SAR has the advantage of being able to observe water resources twice a day at a high resolution both day and night, regardless of weather conditions. Currently, RADARSAT-2 and Sentinel-1 equipped with C-band SAR achieve the purpose of their launch and are used in various environmental fields such as forest structure detection and coastline change monitoring, as well as for unique purposes including the detection of flooding, drought and soil moisture change, utilizing the advantages of SAR. As such, this study aimed to analyze the characteristics of the next-generation medium satellite No. 5 and its application in environmental fields. Our findings showed that it can be used to improve the degree of precision of existing environmental spatial information such as the classification accuracy of land cover map in environmental field works. It also enables us to observe forests and water resources in North Korea that are difficult to access geographically. It is ultimately expected that this will enable the monitoring of the whole Korean Peninsula in various environmental fields, and help in relevant responses and policy supports.

Multi-resolution SAR Image-based Agricultural Reservoir Monitoring (농업용 저수지 모니터링을 위한 다해상도 SAR 영상의 활용)

  • Lee, Seulchan;Jeong, Jaehwan;Oh, Seungcheol;Jeong, Hagyu;Choi, Minha
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.5_1
    • /
    • pp.497-510
    • /
    • 2022
  • Agricultural reservoirs are essential structures for water supplies during dry period in the Korean peninsula, where water resources are temporally unequally distributed. For efficient water management, systematic and effective monitoring of medium-small reservoirs is required. Synthetic Aperture Radar (SAR) provides a way for continuous monitoring of those, with its capability of all-weather observation. This study aims to evaluate the applicability of SAR in monitoring medium-small reservoirs using Sentinel-1 (10 m resolution) and Capella X-SAR (1 m resolution), at Chari (CR), Galjeon (GJ), Dwitgol (DG) reservoirs located in Ulsan, Korea. Water detected results applying Z fuzzy function-based threshold (Z-thresh) and Chan-vese (CV), an object detection-based segmentation algorithm, are quantitatively evaluated using UAV-detected water boundary (UWB). Accuracy metrics from Z-thresh were 0.87, 0.89, 0.77 (at CR, GJ, DG, respectively) using Sentinel-1 and 0.78, 0.72, 0.81 using Capella, and improvements were observed when CV was applied (Sentinel-1: 0.94, 0.89, 0.84, Capella: 0.92, 0.89, 0.93). Boundaries of the waterbody detected from Capella agreed relatively well with UWB; however, false- and un-detections occurred from speckle noises, due to its high resolution. When masked with optical sensor-based supplementary images, improvements up to 13% were observed. More effective water resource management is expected to be possible with continuous monitoring of available water quantity, when more accurate and precise SAR-based water detection technique is developed.

Oceanic Application of Satellite Synthetic Aperture Radar - Focused on Sea Surface Wind Retrieval - (인공위성 합성개구레이더 영상 자료의 해양 활용 - 해상풍 산출을 중심으로 -)

  • Jang, Jae-Cheol;Park, Kyung-Ae
    • Journal of the Korean earth science society
    • /
    • v.40 no.5
    • /
    • pp.447-463
    • /
    • 2019
  • Sea surface wind is a fundamental element for understanding the oceanic phenomena and for analyzing changes of the Earth environment caused by global warming. Global research institutes have developed and operated scatterometers to accurately and continuously observe the sea surface wind, with the accuracy of approximately ${\pm}20^{\circ}$ for wind direction and ${\pm}2m\;s^{-1}$ for wind speed. Given that the spatial resolution of the scatterometer is 12.5-25.0 km, the applicability of the data to the coastal area is limited due to complicated coastal lines and many islands around the Korean Peninsula. In contrast, Synthetic Aperture Radar (SAR), one of microwave sensors, is an all-weather instrument, which enables us to retrieve sea surface wind with high resolution (<1 km) and compensate the sparse resolution of the scatterometer. In this study, we investigated the Geophysical Model Functions (GMF), which are the algorithms for retrieval of sea surface wind speed from the SAR data depending on each band such as C-, L-, or X-band radar. We reviewed in the simulation of the backscattering coefficients for relative wind direction, incidence angle, and wind speed by applying LMOD, CMOD, and XMOD model functions, and analyzed the characteristics of each GMF. We investigated previous studies about the validation of wind speed from the SAR data using these GMFs. The accuracy of sea surface wind from SAR data changed with respect to observation mode, GMF type, reference data for validation, preprocessing method, and the method for calculation of relative wind direction. It is expected that this study contributes to the potential users of SAR images who retrieve wind speeds from SAR data at the coastal region around the Korean Peninsula.

Application of Satellite Imagery to Research on Earthquake and Volcano (지진·화산 연구에 대한 위성영상 활용)

  • Lee, Won-Jin;Park, Sun-Cheon;Kim, Sang-Wan;Lee, Duk Kee
    • Korean Journal of Remote Sensing
    • /
    • v.34 no.6_4
    • /
    • pp.1469-1478
    • /
    • 2018
  • Earthquakes and volcanic eruptions are disaster that causes billions of dollars in property damage and the loss of human life. Therefore, it is required to effectively monitor earthquakes and volcanoes. With the increase of satellite data, researches on earthquake and volcano using satellite imagery has been improved. Satellite images can be divided into three types i.e. optical, thermal, Synthetic Aperture Radar (SAR) and each image has different characteristics. In this article, we summarized its advantages and disadvantages of each type of satellite image. Moreover, we investigated the previous researches about earthquake and volcano using satellite images. Finally, we suggest application method to respond earthquake and volcano disaster using satellite images.

Detection of Surface Changes by the 6th North Korea Nuclear Test Using High-resolution Satellite Imagery (고해상도 위성영상을 활용한 북한 6차 핵실험 이후 지표변화 관측)

  • Lee, Won-Jin;Sun, Jongsun;Jung, Hyung-Sup;Park, Sun-Cheon;Lee, Duk Kee;Oh, Kwan-Young
    • Korean Journal of Remote Sensing
    • /
    • v.34 no.6_4
    • /
    • pp.1479-1488
    • /
    • 2018
  • On September 3rd 2017, strong artificial seismic signals from North Korea were detected in KMA (Korea Meteorological Administration) seismic network. The location of the epicenter was estimated to be Punggye-ri nuclear test site and it was the most powerful to date. The event was not studied well due to accessibility and geodetic measurements. Therefore, we used remote sensing data to analyze surface changes around Mt. Mantap area. First of all, we tried to detect surface deformation using InSAR method with Advanced Land Observation Satellite-2 (ALOS-2). Even though ALOS-2 data used L-band long wavelength, it was not working well for this particular case because of decorrelation on interferogram. The main reason would be large deformation near the Mt. Mantap area. To overcome this limitation of decorrelation, we applied offset tracking method to measure deformation. However, this method is affected by window kernel size. So we applied various window sizes from 32 to 224 in 16 steps. We could retrieve 2D surface deformation of about 3 m in maximum in the west side of Mt. Mantap. Second, we used Pleiadas-A/B high resolution satellite optical images which were acquired before and after the 6th nuclear test. We detected widespread surface damage around the top of Mt. Mantap such as landslide and suspected collapse area. This phenomenon may be caused by a very strong underground nuclear explosion test. High-resolution satellite images could be used to analyze non-accessible area.