• Title/Summary/Keyword: High redshift galaxies

Search Result 129, Processing Time 0.023 seconds

THE COSMIC EVOLUTION OF LUMINOUS INFRARED GALAXIES: STRONG INTERACTIONS/MERGERS OF GAS-RICH DISKS

  • SANDERS D. B.
    • Journal of The Korean Astronomical Society
    • /
    • v.36 no.3
    • /
    • pp.149-158
    • /
    • 2003
  • Deep surveys at mid-infared through submillimeter wavelengths indicate that a substantial fraction of the total luminosity output from galaxies at high redshift (z > 1) emerges at wavelengths 30 - 300${\mu}m$. In addition, much of the star formation and AGN activity associated with galaxy building at these epochs appears to reside in a class of luminous infrared galaxies (LIGs), often so heavily enshrouded in dust that they appear as 'blank-fields' in deep optical/UV surveys. Here we present an update on the state of our current knowledge of the cosmic evolution of LIGs from z = 0 to z $\~$ 4 based on the most recent data obtained from ongoing ground-based redshift surveys of sources detected in ISO and SCUBA deep fields. A scenario for the origin and evolution of LIGs in the local Universe (z < 0.3), based on results from multiwavelength observations of several large complete samples of luminous IRAS galaxies, is then discussed.

The Evolution of the Mass-Metallicity Relation at 0.20 < z < 0.35

  • Chung, Jiwon;Rey, Soo-Chang;Sung, Eon-Chang
    • Journal of Astronomy and Space Sciences
    • /
    • v.30 no.1
    • /
    • pp.59-67
    • /
    • 2013
  • We present a spectroscopic study of 343 blue compact galaxies (BCGs) at 0.20 < z < 0.35 from the Sloan Digital Sky Survey (SDSS) DR7 data. We derive gas phase oxygen abundance using the empirical and direct method. Stellar masses of galaxies are derived from the STARLIGHT code. We also derive star formation rates of galaxies based on $H{\alpha}$ emission line from the SDSS as well as far-ultraviolet (FUV) flux from the Galaxy Evolution Explorer GR6 data. Evolution of the luminosity-metallicity and mass-metallicity (M-Z) relations with redshift is observed. At a given luminosity and mass, galaxies at higher redshifts appear to be biased to low metallicities relative to the lower redshift counterparts. Furthermore, low mass galaxies show higher specific star formation rates (SSFRs) than more massive ones and galaxies at higher redshifts are biased to higher SSFRs compared to the lower redshift sample. By visual inspection of the SDSS images, we classify galaxy morphology into disturbed or undisturbed. In the M-Z relation, we find a hint that morphologically disturbed BCGs appear to exhibit low metallicities and high SSFRs compared to undisturbed counterparts. We suggest that our results support downsizing galaxy formation scenario and star formation histories of BCGs are closely related with their morphologies.

STAR FORMING ACTIVITY OF CLUSTER GALAXIES AT z~1

  • KIM, JAE-WOO;IM, MYUNGSHIN;LEE, SEONG-KOOK;HYUN, MINHEE
    • Publications of The Korean Astronomical Society
    • /
    • v.30 no.2
    • /
    • pp.503-505
    • /
    • 2015
  • The galaxy cluster is an important object for investigating the large scale structure and evolution of galaxies. Recent wide and deep near-IR surveys provide an opportunity to search for galaxy clusters in the high redshift universe. We have identified candidate clusters of 0.8< z <1.2 from the $25deg^2$ SA22 field using an optical-near-IR dataset from merged UKIDSS DXS, IMS and CFHTLS catalogs. Using these candidates, we investigate the star forming activity of member galaxies. Consequently, at z ~1, the star forming activity of cluster galaxies is not distinguishable from those of field galaxies, which is different from members in local clusters. This means the environmental effect becomes more important for $M_{\ast}>10^{10}M_{\odot}$ galaxies at z <1.

The Dark Energy Research Using Type Ia Supernovae in the GMT Era: The Evolution-Free and Dust-Free Test

  • Kim, Young-Lo;Kang, Yijung;Lim, Dongwook;Lee, Young-Wook
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.38 no.2
    • /
    • pp.59.2-59.2
    • /
    • 2013
  • The luminosity evolution of Type Ia supernova (SN Ia) and dust extinction play major roles in the systematic uncertainties in the SN cosmology. In order to overcome these obstacles, here we propose to use GMT-GMACS to take spectra for early-type host-galaxies of SNe Ia in the redshift range between 0.2 and 1.0. This high-redshift sample will be taken from Dark Energy Survey (DES), which expects more than 200 early-type hosts at this redshift range. They will be compared with nearby early-type hosts, for which we are now obtaining low-resolution spectra. We will select host-galaxies of same population age range for both nearby and high-redshift samples to reduce the possible evolution effect. Since we are dealing with early-type galaxies, our test is also less affected by dust extinction. We expect that our evolution-free and dust-free dark energy test will provide more robust results on the nature of dark energy.

  • PDF

Intrinsic alignments of emission line galaxies at z ~1.4 from the FastSound redshift survey

  • Tonegawa, Motonari;Okumura, Teppei;Totani, Tomonori;Dalton, Gavin;Yabe, Kiyoto
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.42 no.2
    • /
    • pp.54.1-54.1
    • /
    • 2017
  • Intrinsic alignments (IA), the coherent alignment of intrinsic galaxy orientations, can be a source of a systematic error of weak lensing surveys. The redshift evolution of IA also contains information about the physics of galaxy formation and evolution. We present the first measurement of IA at high redshift, z~1.4, using the spectroscopic catalog of blue star-forming galaxies of the FastSound redshift survey, with the galaxy shape information from the Canada-Hawaii-France telescope lensing survey. The IA signal is consistent with zero with power-law amplitudes fitted to the projected correlation functions for density-shape and shape-shape correlation components, $A_{\delta+}=-0.0040\pm 0.0754$ and $A_{++}=-0.0159\pm 0.0271$, respectively. These results are consistent with those obtained from blue galaxies at lower redshifts (e.g., $A_{\delta+}=0.0035_{-0.0389}^{+0.0387}$ and $A_{++}=0.0045_{-0.0168}^{+0.0166}$ at z=0.51 from the WiggleZ survey), suggesting no strong redshift evolution of IA. The upper limit of the constrained IA amplitude corresponds to a few percent contamination to the weak-lensing shear power spectrum, resulting in systematic uncertainties on the cosmological parameter estimations by $-0.035<\Delta \sigma_8<0.026$ and $-0.025<\Delta \Omega_{\mathrm m}<0.019$.

  • PDF

Star formation in high redshift early-type galaxies

  • Gobat, Raphael;Daddi, Emanuele;Magdis, Georgios;Bournaud, Frederic;Sargent, Mark;Martig, Marie;Jin, Shuowen;Hwang, Ho Seong
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.42 no.2
    • /
    • pp.40.1-40.1
    • /
    • 2017
  • Massive early-type galaxies (ETG) have been spectroscopically confirmed up to z>3 which, together with their ages and abundances at z>1.5, implies that their progenitors must have converted gas into stars on short timescales. The termination of star formation in these galaxies can occur through several channels, but they remain largely conjectural, in part due to the current lack of direct measurements of the amount of residual gas in high redshift ETGs. Here I will present constraints on the star formation rate and dust/gas content of z=1.4-2.5 ETGs. These galaxies, close to their epoch of quenching, contained more than 2 orders of magnitude more dust than their local counterparts, which suggests the presence of substantial amounts of gas and a low star formation efficiency.

  • PDF

HIGH REDSHIFT QUASAR SURVEY WITH IMS

  • JEON, YISEUL;IM, MYUNGSHIN
    • Publications of The Korean Astronomical Society
    • /
    • v.30 no.2
    • /
    • pp.405-407
    • /
    • 2015
  • We describe a survey of quasars in the early universe, beyond z ~ 5, which is one of the main science goals of the Infrared Medium-deep Survey (IMS) conducted by the Center for the Exploration of the Origin of the Universe (CEOU). We use multi-wavelength archival data from SDSS, CFHTLS, UKIDSS, WISE, and SWIRE, which provide deep images over wide areas suitable for searching for high redshift quasars. In addition, we carried out a J-band imaging survey at the United Kingdom InfraRed Telescope with a depth of ~23 AB mag and survey area of ${\sim}120deg^2$, which makes IMS a suitable survey for finding faint, high redshift quasars at z ~ 7. In addition, for the quasar candidates at z ~ 5.5, we are conducting observations with the Camera for QUasars in EArly uNiverse (CQUEAN) on the 2.1m telescope at McDonald Observatory, which has a custom-designed filter set installed to enhance the efficiency of selecting robust quasar candidate samples in this redshift range. We used various color-color diagrams suitable for the specific redshift ranges, which can reduce contaminating sources such as M/L/T dwarfs, low redshift galaxies, and instrumental defects. The high redshift quasars we are confirming can provide us with clues to the growth of supermassive black holes since z ~ 7. By expanding the quasar sample at 5 < z < 7, the final stage of the hydrogen reionization in the intergalactic medium (IGM) can also be fully understood. Moreover, we can make useful constraints on the quasar luminosity function to study the contribution of quasars to the IGM reionization.

NEWLY DISCOVERED z ~ 5 QUASARS BASED ON DEEP LEARNING AND BAYESIAN INFORMATION CRITERION

  • Shin, Suhyun;Im, Myungshin;Kim, Yongjung;Jiang, Linhua
    • Journal of The Korean Astronomical Society
    • /
    • v.55 no.4
    • /
    • pp.131-138
    • /
    • 2022
  • We report the discovery of four quasars with M1450 ≳ -25.0 mag at z ~ 5 and supermassive black hole mass measurement for one of the quasars. They were selected as promising high-redshift quasar candidates via deep learning and Bayesian information criterion, which are expected to be effective in discriminating quasars from the late-type stars and high-redshift galaxies. The candidates were observed by the Double Spectrograph on the Palomar 200-inch Hale Telescope. They show clear Lyα breaks at about 7000-8000 Å, indicating they are quasars at 4.7 < z < 5.6. For HSC J233107-001014, we measure the mass of its supermassive black hole (SMBH) using its C IV λ1549 emission line. The SMBH mass and Eddington ratio of the quasar are found to be ~108 M and ~0.6, respectively. This suggests that this quasar possibly harbors a fast growing SMBH near the Eddington limit despite its faintness (LBol < 1046 erg s-1). Our 100% quasar identification rate supports high efficiency of our deep learning and Bayesian information criterion selection method, which can be applied to future surveys to increase high-redshift quasar sample.

Galaxy clustering from the UKIDSS DXS

  • Kim, Jae-U
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.37 no.1
    • /
    • pp.36.1-36.1
    • /
    • 2012
  • Recent wide and deep surveys allow us to investigate the large scale structure of the Universe at high redshift. We present studies of the clustering of high redshift galaxies, using reprocessed UKIDSS DXS catalogue. We measure the angular correlation function of high redshift galaxies which is Extremely Red Objects (EROs). Firstly we found that their angular correlation functions can be described by a broken power-law. We also found that red or bright samples are more strongly clustered than those having the opposite characteristics, and that old, passive EROs are found to be more clustered than dustry, star-forming EROs. Additionally the average halo mass and other properties were estimated using the halo model. Finally the observed clustering of EROs was compared with predictions from the cosmological simulation.

  • PDF

CLUSTERING OF EXTREMELY RED OBJECTS IN THE SUBARU GTO 2DEG2 FIELD

  • Shin, Jihey;Shim, Hyunjin;Hwang, Ho Seong;Ko, Jongwan;Lee, Jong Chul;Utsumi, Yousuke;Hwang, Narae;Park, Byeong-Gon
    • Journal of The Korean Astronomical Society
    • /
    • v.50 no.3
    • /
    • pp.61-70
    • /
    • 2017
  • We study the angular correlation function of bright ($K_s{\leq}19.5$) Extremely Red Objects (EROs) selected in the Subaru GTO 2$deg^2$ field. By applying the color selection criteria of $R-K_s$ > 5.0, 5.5, and 6.0, we identify 9055, 4270, and 1777 EROs, respectively. The number density is consistent with similar studies on the optical - NIR color selected red galaxies. The angular correlation functions are derived for EROs with different limiting magnitude and different $R-K_s$ color cut. When we assume that the angular correlation function $w({\theta})$ follows a form of a power-law (i.e., $w({\theta})=A{\theta}^{-{\delta}}$), the value of the amplitude A was larger for brighter EROs compared to the fainter EROs. The result suggests that the brighter, thus more massive high-redshift galaxies, are clustered more strongly compared to the less massive galaxies. Assuming that EROs have redshift distribution centered at ~ 1.1 with ${\sigma}_z=0.15$, the spatial correlation length $r_0$ of the EROs estimated from the observed angular correlation function ranges ${\sim}6-10h^{-1}Mpc$. A comparison with the clustering of dark matter halos in numerical simulation suggests that the EROs are located in most massive dark matter halos and could be progenitors of $L_{\ast}$ elliptical galaxies.