• Title/Summary/Keyword: High pure gas

Search Result 259, Processing Time 0.033 seconds

Excellent Carbon Monoxide Sensing Performance of Au-Decorated SnO2 Nanofibers

  • Kim, Jae-Hun;Zheng, Yifang;Mirzaei, Ali;Kim, Sang Sub
    • Korean Journal of Materials Research
    • /
    • v.26 no.12
    • /
    • pp.741-750
    • /
    • 2016
  • Nanofibers(NFs), because of their high surface area and nanosized grains, have appropriate morphologies for use in chemiresistive-type sensors for gas detection applications. In this study, a highly sensitive and selective CO gas sensing material based on Au-decorated $SnO_2$ NFs was fabricated by electrospinning. $SnO_2$ NFs were synthesized by electrospinning and subsequently decorated with various amounts of Au nanoparticles(NPs) by sputtering; this was followed by thermal annealing. Different characterizations showed the successful formation of Au-decorated $SnO_2$ NFs. Gas sensing tests were performed on the fabricated sensors, which showed bell-shaped sensing behavior with respect to the amount of Au decoration. The best CO sensing performance, with a response of ~20 for 10 ppm CO, was obtained at an optimized amount of Au (2.6 at.%). The interplay between Au and $SnO_2$ in terms of the electronic and chemical sensitization by Au NPs is responsible for the great improvement in the CO sensing capability of pure $SnO_2$ NFs, suggesting that Au-decorated $SnO_2$ NFs can be a promising material for fabricating highly sensitive and selective chemiresistive-type CO gas sensors.

The Comparisons of the Surface Flashover Characteristics at $SF_6$ and the various insulation media. ($SF_6$와 이종절연재의 연면방전 특성 비교)

  • Lee, Jung-Hwan;Park, He-Rie;Park, Sung-Gyu;Choi, Young-Kil;Lee, Kwang-Sik
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.1400_1401
    • /
    • 2009
  • In this paper describes the comparisons of the surface flashover characteristics according to the change of the insulation media by experimental GIS(Gas Insulated Switchgear) chamber in accordance with change of pressure(P) and electrode distance(d). The using insulation medias are $SF_6$, Dry-Air, I-Air(Imitation Air, $N_2$ : $O_2$ = 79[%] : 21[%]), $N_2:O_2$ mixture gas and pure $N_2$. In this study, in order to compare the properties $SF_6$ and order insulation gas, we investigated the properties of the various insulation media with a knife to knife electrode under ac high voltage application. The gas pressure was changed from 1 to 5[atm]. as a result, it was found that dielectric strength is $SF_6$ > I-Air > Dry-Air and the best environmental preservation gas is Dry-Air.

  • PDF

Numerical Analysis of Combustion Characteristics during Mode Transfer Period in a Lean Premixed Gas Turbine for Power Generation (발전용 희박예혼합 가스터빈에서 연소모드변환 시기의 연소특성 해석)

  • Chung Jae Hwa;Seo Seok Bin;Kim Jong Jin;Cha Dong Jin;Ahn Dal Hong
    • Proceedings of the KSME Conference
    • /
    • 2002.08a
    • /
    • pp.279-282
    • /
    • 2002
  • Recently, gas turbines for power generation adopt multistage DLN(Dry Low NOx) type combustion, where diffusion combustion is applied at low load and, with increase in load, the combustion mode is changed to lean premixed combustion to reduce NOx emissive concentration. However, during the mode changeover from diffusion to premixed flame, unfavorable phenomena, such as flashback, high amplitude combustion oscillations, or thermal damage of combustor parts could frequently occur. In the present study, to apply for the analysis of such unfavorable phenomena, three-dimensional CFD investigations are carried out to compare the detailed flow characteristics and temperature distribution inside the gas turbine combustor before and after combustion mode changeover. The fuel considered here is pure methane gas. A standard $k-{\varepsilon}$ turbulence model with wall function and a P-N type radiation heat transfer model, have been utilized. To analyze the complex geometric effects of combustor parts on combustion characteristics, fuel nozzles, a swirl vane f3r fuel-air mixing, and cooling air holes on the combustor liner wall, are included in this simulation.

  • PDF

Fast Responding Gas Sensors Using Sb-Doped SnO2 Nanowire Networks (Sb-첨가 SnO2 나노선 네트워크를 이용한 고속응답 가스센서)

  • Kwak, Chang-Hoon;Woo, Hyung-Sik;Lee, Jong-Heun
    • Journal of Sensor Science and Technology
    • /
    • v.22 no.4
    • /
    • pp.302-307
    • /
    • 2013
  • The Sb-doped $SnO_2$ nanowire network sensors were prepared by thermal evaporation of the mixtures between tin and antimony powders. Pure $SnO_2$ nanowire networks showed high sensor resistance in air ($99M{\Omega}$), similar gas responses to 4 diffferent gases (5 ppm $C_2H_5OH$, CO, $H_2$, and trimethylamine), and very sluggish recovery speed (90% recovery time > 800 s). In contrast, 2 wt% Sb-doped $SnO_2$ showed the selective detection toward $C_2H_5OH$ and trimethylamine, relatively low resistance ($176k{\Omega}$) for facile measurement, and ultrafast recovery speed (90% recovery times: 6 - 18 s). The change of gas sensing charactersitics by Sb doping was discussed in relation to gas sensing mechanism.

The Analysis of Characteristics of GMAW using Sound Signal (음향 신호 분석에 의한 GMAW의 특성분석)

  • 조택동;양상민;양성빈
    • Proceedings of the KWS Conference
    • /
    • 2002.05a
    • /
    • pp.65-67
    • /
    • 2002
  • The gas metal arc welding(GMAW) is regarded as one of the best candidate for welding automation in industrial joining application. It is important to monitor the weld quality for the high performance of weld automation. The measured analog signal is frequency analyzed by digital signal process method. In order to observe the welding phenomena and control welding condition, arc light, voltage, and current are measured at the same time. They are analyzed and compared with arc sound. for these experiments, a power source of constant voltage characteristics was used in the pure metal transfer mode.

  • PDF

ISOTOPIC-SPECTRAL DETERMINATION OF CARBON IN HIGH PURITY INORGANIC MATERIALS

  • Lee, V.N.;Nemets, V.M.
    • Analytical Science and Technology
    • /
    • v.8 no.4
    • /
    • pp.477-480
    • /
    • 1995
  • Isotopic-spectral method [I] was applicated for determination of carbon in silicate materials (pure silica, guartz glasses, geological probs etc.). Isotopic heterogeneous balancing of carbon in gaseous phase and solid samples was carried out at the temperature of $1500-1900^{\circ}K$. Spectroscopic measuring of isotope concentration in a balanced gas was made using the electron-vibrational band heads of CO molecules excited in HF discharge. Limits of detection of carbon concentrations appear to be $n^*10^{-6}$.

  • PDF

The Study on Thin Film Fabrication using UHV-LCVD System (I) (UHV-LCVD 장치를 이용한 박막제작에 관한 연구 (I) - 장치 제작을 중심으로 -)

  • Choi, Won-Kook;Yun, Dug-Ju;Gong, Byung-In;Kim, Chang-Hyun;Whang, Chung-Nam;Jeong, Kwang-Ho
    • Journal of the Korean Vacuum Society
    • /
    • v.2 no.2
    • /
    • pp.255-260
    • /
    • 1993
  • UHV-LCVD system was constructed for high quality silicon nitride thin film fabrication. This system consisted of a reaction chamber, an introduction chamber with sample load lock entry, a carbinet for gas manipulation controlling gas flow, a $CO_2$ laser and a Fourier transform mass spectrometer. Although the UHV-LCVD system construction was more sophisticated than low pressure CVD, highly pure thin films were fabricated by controlling gas mixing ratio and flow rate in ultra high vacuum surroundings.

  • PDF

An ionization Chamber for a Steel Sheet Thickness Measurement

  • Kim, Han-Soo;Park, Se-Hwa;Kim, Yong-Kyun;Ha, Jang-Ho;Cho, Seung-Yeon
    • Journal of Radiation Protection and Research
    • /
    • v.31 no.3
    • /
    • pp.149-153
    • /
    • 2006
  • An ionization chamber is still widely used in many fields by virtue of its' simple operational characteristics and the possibility of its' various shapes. A parallel type of an ionization chamber for a steel sheet thickness measurement was designed and fabricated. High pure xenon gas, which was pressurized up to 6 atm, was chosen as a filling gas to increase the current response and sensitivity for a radiation. A high pressure gas system was also constructed. The active volume and the incident window size of the fabricated ionization chamber were $30\;cm^3\;and\;12\;cm^2$, respectively. Preliminary tests with a 25 mCi $^{241}Am$ gamma-ray source and evaluation tests in a standard X-ray field were performed. The optimal operation voltage was set from the results of the collection efficiency calculation by using an experimental two-voltage method. Linearity for a variation of the steel sheet thickness, which is the most important factor for an application during a steel sheet thickness measurement, was 0.989 in this study.

Preparation of High Performance Hybrid Chemical Filter using Hot Melt Adhesive by Web Spray and Their Adsorption Properties (핫멜트 Web spray법을 이용한 고기능성 복합 화학필터의 제조 및 흡착특성)

  • Choi, Yong Jae;Shin, Kyoung Sub;Hwang, Taek Sung
    • Journal of Adhesion and Interface
    • /
    • v.10 no.3
    • /
    • pp.141-147
    • /
    • 2009
  • In this study, the high performance hybrid chemical filter (HPHCF) was prepared by web spray using hot melt adhesive. The material of HPHCF was conditionally made of ion exchange resin and PP non-woven fabric. The optimum temperature and pressure for manufacturing of HPHCF conditions were such as $170^{\circ}C$ and 50 psi, respectively. The characteristics of preparated HPHCF and their adsorption properties of ammonia gas were investigated. The ion exchange capacity (IEC) of HPHCF was increased with increasing the resin contents and their values were higher than pure resin and ion exchange fabrics. The removal efficiency for ammonia gas increased with the increase of packing density of hybrid ion exchange fabrics in the column. It showed 13 min which the adsorption breakthrough time was slower than resin and fibers. The maximum value of adsorption for ammonia gas was 98 percent. And also, the velocity was increased with increasing concentration and flow rate of ammonia gas.

  • PDF

Formation of Dielectric Carbon Nitride Thin Films using a Pulsed Laser Ablation Combined with High Voltage Discharge Plasma (펄스 레이저 애블레이션이 결합된 고전압 방전 플라즈마 장치를 이용한 유전성 질화탄소 박막의 합성)

  • 김종일
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.16 no.7
    • /
    • pp.641-646
    • /
    • 2003
  • The dielectric carbon nitride thin films were deposited onto Si(100) substrate using a pulsed laser ablation of pure graphite target combined with a high voltage discharge plasma in the presence of a N$_2$ reactive gas. We calculated dielectric constant, $\varepsilon$$\_$s/, with a capacitance Schering bridge method. We investigated the influence of the laser ablation of graphite target and DC high voltage source for the plasma. The properties of the deposited carbon nitride thin films were influenced by the high voltage source during the film growth. Deposition rate of carbon nitride films were increased drastically with the increase of high voltage source. Infrared absorption clearly shows the existence of C=N bonds and C=N bonds. The carbon nitride thin films were observed crystalline phase confirmed by x-ray diffraction data.