• Title/Summary/Keyword: High pressure processing

Search Result 620, Processing Time 0.024 seconds

Experimental study on micro-hole drilling with high aspect ratio using picosecond laser (피코초 레이저를 이용한 고세장비 미세 홀가공의 실험적 연구)

  • Oh, Bukuk;Kim, Jongki;Kim, Dooyoung;Lee, Seungkey;Jeong, Soohoa;Hong, Michael
    • Laser Solutions
    • /
    • v.18 no.2
    • /
    • pp.11-13
    • /
    • 2015
  • Pressure-drop in a micro-channel is critical when a hole diameter is less then 100um with the high aspect ratio, more than 40. To minimize these pressure loss for micro-channel applications is important and there would be the best hole diameter, taper angle, and their combinations. In this work, the parametric study for laser drilling of anodized material is conducted to obtain the micro-channel hole with high aspect ratio.

Heat Treatments Used in the Dairy Industry (유제품에 이용되는 주요 열처리 조건)

  • Oh, Sejong
    • Journal of Dairy Science and Biotechnology
    • /
    • v.38 no.4
    • /
    • pp.230-236
    • /
    • 2020
  • Heat treatment is a fundamental processing technology in the dairy industry. The main purpose of heat treatment is to destroy pathogenic and spoilage promoting microorganisms to ensure milk safety and shelf life. Despite the development of alternative technologies, such as high-pressure processing and pulse field technology for microbial destruction, heat treatment is widely used in the dairy industry and in other food processes to destroy microorganisms. Heat treatment has contributed greatly to the success of food preservation since Pasteur's early discovery that heat treatment of wine and beer could prevent their deterioration, and since the introduction of milk pasteurization in the 1890s. In Korea, food labeling standards do not stratify heat treatments into low temperature, high temperature, and ultra-high temperature methods. Most milk is produced in Korea by pasteurization, with extended shelf life (ESL : 125--140℃ / 1-10 s). Classification based on temperature (i.e. low, high, and ultra-high), is meaningless.

Effects of High Pressure and Binding Agents on the Quality Characteristics of Restructured Pork (초고압처리 및 결착제 첨가가 재구성 돈육의 품질특성에 미치는 효과)

  • Choi, Ye-Chul;Jung, Kyung-Hun;Chun, Ji-Yeon;Choi, Mi-Jung;Hong, Geun-Pyo
    • Food Science of Animal Resources
    • /
    • v.33 no.5
    • /
    • pp.664-671
    • /
    • 2013
  • The objective of this study was to investigate the effect of high pressure treatment and type of binding agents on the quality characteristics of restructured pork. For binding agents, 2% (w/w) isolated soy protein (SP), 0.5% (w/w) wheat flour (WF) and 0.5% (w/w) ${\kappa}$-carrageenan (KC) were incorporated into meat batter with or without 0.5% (w/w) glucono-${\delta}$-lactone (GdL). The restructured pork was pressurized at varying pressure levels (0.1-450 MPa) for 3 min under ambient temperature and thermal treated at $75^{\circ}C$ for 30 min. As quality parameters of restructured pork, pH, water binding properties, instrumental color and texture profile analysis were determined and compared with control (C, no binder). For type of binders, SP exhibited the best water binding properties, however, the impact on textural properties were lesser than KC and WF. The addition of GdL decreased the pH of restructured pork down to 0.4 unit, while high pressure processing prevented the moisture loss caused from pH decrease by GdL. In particular, meat restructuring efficiency of SP as a binder improved under the presence of GdL. Therefore, the present study demonstrated the potential advantages of low amount of GdL (0.5%, w/w) combined with protein based binder (SP) and high pressure processing in restructuring meat particles.

Precision Cold Forging of Spur Gear Using the Alloy Steel (합금강을 이용한 스퍼기어의 정밀 냉간 단조)

  • Choi, J.C.;Choi, Y.
    • Transactions of Materials Processing
    • /
    • v.6 no.6
    • /
    • pp.500-507
    • /
    • 1997
  • The conventional closed-die forgings had been applied to the forging of spur gears. But the forgings require high forging-pressure. In this paper, new precision forging technology have been developed. The developed technology is two steps forging process. Good shaped products are forged successfully with lower forging-pressure than those of conventional forging. The accuracy of the forged spur gear obtained by new precision forging technology is set nearly equal to that of cut spur gear of fourth and fifth class in Korean industrial standard.

  • PDF

A Study on the Estimation of Blank Holder Force in Square Cup Drawing (정사각용기의 성형시 블랭크 홀더력에 관한 연구)

  • 김진무;송영배
    • Transactions of Materials Processing
    • /
    • v.9 no.4
    • /
    • pp.356-361
    • /
    • 2000
  • In this study, when a square cup is under drawing, blank holder pressure necessary for flange wrinkling prevention was experimentally studied. The materials used in the experiment were SPCC steel and SUS304 and the drawing ratio was 1.62∼2.0. Two cases for lubricantion condition were investigated. One was without lubricant and the other was with lubricant of high viscosity.

  • PDF

Inactivation Kinetics of Listeria innocua ATCC 33090 at Various Temperature Heating-up and Pressure Building-up Rates

  • Ahn, Ju-Hee;Balasubramaniam, V.M.
    • Food Science and Biotechnology
    • /
    • v.16 no.2
    • /
    • pp.255-259
    • /
    • 2007
  • The effects of temperature heating-up rate and pressure building-up phase on the inactivation of Listeria innocua ATCC 33090 were evaluated in buffered peptone water. The number of L. innocua was reduced by 5.57 and 6.52 log CFU/mL during the nonisothermal treatment (the come-up time followed by isothermal process) and the isothermal treatment, respectively, at $60^{\circ}C$. When compared to the isothermal treatment (0.76$33.2^{\circ}C/min$ of temperature heating-rate. The effect of the combined high pressure and thermal processing on the inactivation of L. innocua increased with increasing pressure and temperature. At all temperature levels from 40 to $60^{\circ}C$ under 700 MPa, L. innocua was not detected by enrichment culture (>7 log reduction).

Effect of Residual Oxygen in a Vacuum Chamber on the Deposition of Cubic Boron Nitride Thin Film (진공조의 잔류산소가 입방정질화붕소 박막 합성에 미치는 영향)

  • Oh, Seung-Keun;Kim, Youngman
    • Journal of the Korean institute of surface engineering
    • /
    • v.46 no.4
    • /
    • pp.139-144
    • /
    • 2013
  • c-BN(cubic boron nitride) is known to have extremely high hardness next to diamond, as well as very high thermal and chemical stability. The c-BN in the form of film is useful for wear resistant coatings where the application of diamond film is restricted. However, there is less practical application because of difficult control of processing variables for synthesis of c-BN film as well as unclear mechanism on formation of c-BN. Therefore, in the present study, the structural characterization of c-BN thin film were investigated using $B_4C$ target in r.f. magnetron sputtering system as a function of processing variables. c-BN films were coated on Si(100) substrate using $B_4C$ (99.5% purity). The mixture of nitrogen and argon was used for carrier gas. The deposition processing conditions were changed with substrate bias voltage, substrate temperature and base pressure. Fourier transform infrared microscopy (FT-IR) and X-ray photoelectron spectroscopy (XPS) were used to analyze crystal structures and chemical binding energy of the films. In the case of the BN film deposited at room temperature, c-BN was formed in the substrate bias voltage range of -400 V~ -600 V. Less c-BN fraction was observed as deposition temperature increased and more c-BN fraction was observed as base pressure increased.

Effect of Steaming, Blanching, and High Temperature/High Pressure Processing on the Amino Acid Contents of Commonly Consumed Korean Vegetables and Pulses

  • Kim, Su-Yeon;Kim, Bo-Min;Kim, Jung-Bong;Shanmugavelan, Poovan;Kim, Heon-Woong;Kim, So-Young;Kim, Se-Na;Cho, Young-Sook;Choi, Han-Seok;Park, Ki-Moon
    • Preventive Nutrition and Food Science
    • /
    • v.19 no.3
    • /
    • pp.220-226
    • /
    • 2014
  • In the present report, the effects of blanching, steaming, and high temperature/high pressure processing (HTHP) on the amino acid contents of commonly consumed Korean root vegetables, leaf vegetables, and pulses were evaluated using an Automatic Amino Acid Analyzer. The total amino acid content of the samples tested was between 3.38 g/100 g dry weight (DW) and 21.32 g/100 g DW in raw vegetables and between 29.36 g/100 g DW and 30.55 g/100 g DW in raw pulses. With HTHP, we observed significant decreases in the lysine and arginine contents of vegetables and the lysine, arginine, and cysteine contents of pulses. Moreover, the amino acid contents of blanched vegetables and steamed pulses were more similar than the amino acid contents of the HTHP vegetables and HTHP pulses. Interestingly, lysine, arginine, and cysteine were more sensitive to HTHP than the other amino acids. Partial Least Squares-Discriminate Analyses were also performed to discriminate the clusters and patterns of amino acids.

Growth Mechanisms of Graphite Spherulites in the Nodular Cast Iron and the High-pressure-treated Ni-C alloy (구상흑연 주철과 고압처리된 Ni-C 합금에서 구상화 흑연의 성장 기구)

  • Park, Jong-Ku;Ahn, Jae-Pyoung;Kim, Gyeungho;Kim, Soo-Chul
    • Analytical Science and Technology
    • /
    • v.13 no.2
    • /
    • pp.200-207
    • /
    • 2000
  • The growth mechanisms of graphite spherulite both in the nodular cast iron and the high pressuretreated Ni-C alloy were investigated by SEM, HRTEM and EELS. The internal microstructure and lattice image of graphite spherulite extracted from Ni-C alloy were compared with those of graphite spherulite extracted from the nodular cast iron. The ratios of $sp^2$ and $sp^3$ bonding in the respective graphite spherulite measured by EELS, are compared each other. The graphite spherulite of Ni-C alloy had little internal defects and much $sp^3$ carbon species compared to that of the nodular cast iron. Present difference in microstructural features and bonding characters indicated that the graphite spheruites in the high pressuretreated Ni-C alloy grew by different mechanism compared with those in the nodular cast iron.

  • PDF

Evaluation of Friction Characteristics for High-Strength-Steel Sheets Depending on Conditions (마찰조건에 따른 고강도 강판의 마찰특성 평가)

  • Kim, J. E.;Heo, J. Y.;Yoon, I. C.;Song, J. S.;Youn, K. T.;Park, C. D.
    • Transactions of Materials Processing
    • /
    • v.24 no.6
    • /
    • pp.381-386
    • /
    • 2015
  • Recently, high-strength-steel sheets have been used extensively for increasing fuel-efficiency and stability in automobiles. A study on the characteristics regarding friction factors is required because high-strength-steel sheets have higher contact pressure at the tool interface as compared to low-strength steel sheets. For the current study, a sheet friction test was used to examine the influence of several factors on friction. The friction tests were performed on two types of sheet steels (SPFC590 and SPFC980) to obtain friction coefficients as a function of contact pressure, surface roughness, lubricant viscosity, and speed. Based on the experimental results for SPFC590 and SPFC980, the friction coefficient decreased with increasing contact pressure, but the friction coefficient increased with increasing surface roughness. Also, the friction coefficient decreased with increasing lubricant viscosity and decreasing speed.