Browse > Article

Inactivation Kinetics of Listeria innocua ATCC 33090 at Various Temperature Heating-up and Pressure Building-up Rates  

Ahn, Ju-Hee (Division of Biomaterials Engineering, Kangwon National University)
Balasubramaniam, V.M. (Department of Food Science and Technology, The Ohio State University)
Publication Information
Food Science and Biotechnology / v.16, no.2, 2007 , pp. 255-259 More about this Journal
Abstract
The effects of temperature heating-up rate and pressure building-up phase on the inactivation of Listeria innocua ATCC 33090 were evaluated in buffered peptone water. The number of L. innocua was reduced by 5.57 and 6.52 log CFU/mL during the nonisothermal treatment (the come-up time followed by isothermal process) and the isothermal treatment, respectively, at $60^{\circ}C$. When compared to the isothermal treatment (0.76 of temperature heating-rate. The effect of the combined high pressure and thermal processing on the inactivation of L. innocua increased with increasing pressure and temperature. At all temperature levels from 40 to $60^{\circ}C$ under 700 MPa, L. innocua was not detected by enrichment culture (>7 log reduction).
Keywords
high pressure; Listeria innocua; kinetics; nonisothermal; isothermal;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
Times Cited By Web Of Science : 3  (Related Records In Web of Science)
Times Cited By SCOPUS : 3
연도 인용수 순위
1 luneja VK, Novak JS, Huang L, Eblen BS. Increased thermotolerance of Clostridium perfringens spores following sublethal heat shock. Food Control 14: 163-168 (2003)   DOI   ScienceOn
2 Farber JM, Brown BE. Effect of prior heat shock on heat resistance of Listeria monocytogenes in meat. Appl. Environ. Microb. 56: 1584-1587 (1990)
3 Lim S, Yagiz Y, Balaban MO. Continuous high pressure carbon dioxide processing of mandarin juice. Food Sci. Biotechnol. 15: 1318 (2006)   과학기술학회마을
4 Teixeira AA. Thermal processing calculations. pp. 563-619. In: Handbook of Food Engineering. Heldman DR, Lund LB (eds). Marcel Dekker, Inc., New York, NY, USA (1992)
5 Hassani M, Manas P, Raso J, Condon S, Pagan R. Predicting heat inactivation of Listeria monocytogenes under nonisothermal treatments. J. Food Protect. 68: 736-743 (2005)   DOI
6 Palou E, Lopez-Malo A, Barbosa-Canovas GV, Welti-Chanes J, Swanson BG. Kinetic analysis of Zygosaccharomyces bailii inactivation by high hydrostatic pressure. LWT- Food Sci. Technol. 30: 703-708 (1997)   DOI   ScienceOn
7 Jin SS, Jin YG, Yoon KS, Woo GJ, Hwang IG, Bahk GJ, Oh DH. Predictive modeling of the growth and survival of Listeria monocytogenes using a response surface model. Food Sci. Biotechnol. 15: 715-720 (2006)   과학기술학회마을
8 Fleming DW, Cochi SL, McDonald KL, Bronctum J, Hayesm PS, Plikaytis BD, Holmes MB, Audurier A, Broome CV, Reingold AL. Pasteurized milk as a vehicle of infection in an outbreak of listeriosis. New. Engl. J. Med. 312: 404-407 (1985)   DOI   ScienceOn
9 Mafias P, Pagan R, Alvarez I, Uson SC. Survival of Salmonella senftenburg 775 W to current liquid whole egg pasteurization treatments. Food Microbiol. 20: 593-600 (2003)   DOI   ScienceOn
10 Pagan R, Condon S, Sala FJ. Effect of several factors on heat-shock induced thermotolerance of Listeria monocytogenes. Appl. Environ. Microb. 63: 3225-3232 (1997)
11 Hartmann C, Delgado A. Numerical simulation of thermal and fluiddynamical transport effects on a high pressure induced inactivation. High Pressure Res. 23: 67-70 (2003)   DOI   ScienceOn
12 Corradini MG, Normand MD, Peleg M. Calculating the efficacy of heat sterilization process. J. Food Eng. 67: 59-69 (2005)   DOI   ScienceOn
13 Doyle MP, Glass KA, Beery JT, Garcia GA, Pollard DJ, Schultz RD. Survival of Listeria monocytogenes in milk during hightemperature, short-time pasteurization. Appl. Environ. Microb. 53: 1433-1438 (1987)
14 Hong GP, Park SH, Kim JY, Lee SK, Min S-G. Effects of timedependent high pressure treatment on physico-chemical properties of pork. Food Sci. Biotechnol. 14: 808-812 (2005)
15 Linton RH, Carter WH, Pierson MD, Hackney CR. Use of a modified Gompertz equation to model nonlinear survival curves for Listeria monocytogenes Scott A. J. Food Protect. 58: 946-954 (1995)   DOI
16 Chen H, Hoover DG, Pressure inactivation kinetics of Yersinia enterocolitica ATCC 35669. Int. J. Food Microbiol. 87: 161-171 (2003)   DOI   ScienceOn
17 Farber JM, Peterkin PI. Listeria monocytogenes, a food-borne pathogen. Microbiol. Rev. 55: 476-511 (1991)
18 MacKey BM, Pritchet C, Norris A, Mead GC. Heat resistance of Listeria: strain differences and effect of meat type and curing salts. Lett. Appl. Microbiol. 10: 251-255 (1990)   DOI
19 Conesa R, Periago PM, Esnoz A, Lopez A, Palop A. Prediction of Bacillus subtilis spore survival after a combined non-isothermalisothermal heat treatment. Eur. Food Res. Technol. 217: 319-324 (2003)   DOI
20 Bell C, Kyriakides A. Bacterial hazards. pp. 279-433. In: Foodbome Pathogens. Blackburn CW, McClure PJ (eds). Woodhead Publishing Ltd., Cambridge, UK (2002)
21 Shank FR, Elliot EL, Wachsmuth IK, Losikoff ME. US position on Listeria monocytogenes in foods. Food Control 7: 229-234 (1996)   DOI   ScienceOn
22 Cheftel JC. High-pressure, microbial inactivation, and food preservation. Food Sci. Technol. Int. 1: 75-90 (1995)   DOI
23 Yen LC, Sofos JN, Schmidt GR. Effect of meat curing ingredients on thermal destruction of Listeria monocytogenes in ground pork. J. Food Protect. 54: 408-412 (1991)   DOI
24 Torres JA, Velazquez G. Commercial opportunities and research challenges in the high pressure processing of foods. J. Food Eng. 67: 95-112 (2005)   DOI   ScienceOn
25 Ardia A, Knorr D, Ferrari G, Heinz V. Kinetic studies on combined high-pressure and temperature inactivation of Alicyclobacillus acidoterrestris spores in organic juice. Appl. Biotechnol. Food Sci. Policy 1: 169-173 (2003)
26 MacKey BM, Derrick CM. Changes in the heat resistance of Salmonella typhimurium during at rising temperatures. Lett. Appl. Microbiol. 4: 13-16 (1987)   DOI
27 Ananta E, Heinz V, Schluter O, Knorr D. Kinetic studies on highpressure inactivation of Bacillus stearothermophilus spores suspended in food matrices. Innov. Food Sci. Emerg. 2: 261-272 (2001)   DOI   ScienceOn
28 Allan B, Linseman M, MacDonald LA, Lam JS, Kropinski AM. Heat shock response of Pseudomonas aeruginosa. J. Bacteriol. 170: 3668-3674 (1988)   DOI
29 MacKey BM, Bratchell N. A review. The heat resistance of Listeria monocytogenes. Lett. Appl. Microbiol. 9: 89-94 (1999)
30 Chen H, Hoover DG, Modeling the combined effect of high hydrostatic pressure and mild heat on the inactivation kinetics of Listeria monocytogenes Scott A in whole milk. Innov. Food Sci. Emerg. 4: 25-34 (2003)   DOI   ScienceOn
31 Cole MB, Davis KW, Munro G, Holyoak CD, Kilsby DC. A vitalistic model to describe the thermal inactivation of Listeria monocytogenes. J. Ind. Microbiol. Biot. 12: 232-239 (1993)   DOI
32 Xiong R, Xie G, Edmondson AS, Linton RH, Sheard MA. Comparison of the Baranyi model with the modified Gompertz equation for modelling thermal inactivation of Listeria monocytogenes Scott A. Food Microbiol. 16: 269-275 (1999)   DOI   ScienceOn
33 Corradini MG, Peleg M. Estimating non-isothermal bacterial growth in foods from isothermal experimental data. J. Appl. Microbiol. 99: 187-200 (2005)   DOI   ScienceOn
34 AI-Holy M, Quinde Z, Guan D, Tang J, Rasco B. Thermal inactivation of Listeria monocytogenes in salmon (Oncorhynchus keta) caviar using conventional glass and novel aluminium thermaldeath-time tubes. J. Food Protect. 67: 383-386 (2004)   DOI
35 Peleg M, Normand MD, Corradini MG, Generating microbial survival curves during thermal processing in real time. J. Appl. Microbiol. 98: 406-417 (2005)   DOI   ScienceOn