• Title/Summary/Keyword: High pressure micro jet(HPMJ)

Search Result 2, Processing Time 0.015 seconds

Development of a Pad Conditioning Method for ILD CMP using a High Pressure Micro Jet System

  • Lee, Hyo-Sang;DeNardis, Darren;Philipossian, Ara;Seike, Yoshiyuki;Takaoka, Mineo;Miyachi, Keiji;Doi, Toshiro
    • Transactions on Electrical and Electronic Materials
    • /
    • v.8 no.1
    • /
    • pp.26-31
    • /
    • 2007
  • The goal of this study is to determine if High Pressure Micro Jet (HPMJ) conditioning can be used as a substitute for, or in conjunction with, conventional diamond pad conditioning. Five conditioning methods were studied during which 50 ILD wafers were polished successively in a 100-mm scaled polisher and removal rate (RR), coefficient of friction (COF), pad flattening ratio (PFR) and scanning electron microscopy (SEM) measurements were obtained. Results indicated that PFR increased rapidly, and COF and removal rate decreased significantly, when conditioning was not employed. With diamond conditioning, both removal rate and COF were stable from wafer to wafer, and low PFR values were observed. SEM images indicated that clean grooves could be achieved by HPMJ pad conditioning, suggesting that HPMJ may have the potential to reduce micro scratches and defects caused by slurry abrasive particle residues inside grooves. Regardless of different pad conditioning methods, a linear correlation was observed between temperature, COF and removal rate, while an inverse relationship was seen between COF and PFR.

Thermal, Tribological, and Removal Rate Characteristics of Pad Conditioning in Copper CMP

  • Lee, Hyo-Sang;DeNardis, Darren;Philipossian, Ara;Seike, Yoshiyuki;Takaoka, Mineo;Miyachi, Keiji;Furukawa, Shoichi;Terada, Akio;Zhuang, Yun;Borucki, Len
    • Transactions on Electrical and Electronic Materials
    • /
    • v.8 no.2
    • /
    • pp.67-72
    • /
    • 2007
  • High Pressure Micro Jet (HPMJ) pad conditioning system was investigated as an alternative to diamond disc conditioning in copper CMP. A series of comparative 50-wafer marathon runs were conducted at constant wafer pressure and sliding velocity using Rohm & Haas IC1000 and Asahi-Kasei EMD Corporation (UNIPAD) concentrically grooved pads under ex-situ diamond conditioning or HPMJ conditioning. SEM images indicated that fibrous surface was restored using UNIPAD pads under both diamond and HPMJ conditioning. With IC1000 pads, asperities on the surface were significantly collapsed. This was believed to be due to differences in pad wear rates for the two conditioning methods. COF and removal rate were stable from wafer to wafer using both diamond and HPMJ conditioning when UNIPAD pads were used. Also, HPMJ conditioning showed higher COF and removal rate when compared to diamond conditioning for UNIPAD. On the other hand, COF and removal rates for IC1000 pads decreased significantly under HPMJ conditioning. Regardless of pad conditioning method adopted and the type of pad used, linear correlation was observed between temperature and COF, and removal rate and COF.