• Title/Summary/Keyword: High pressure gas

Search Result 2,456, Processing Time 0.029 seconds

Extension of a High Resolution Lagrangian Method to Consider the Real Gas Effect

  • Mazaheri K
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.48-49
    • /
    • 2003
  • In the present research a high order Gudonov-type method has been used for the simulation of very high pressure flow fields, as well as the capturing of strong shocks, which usually occur in explosion of high explosives. The treatment strong shocks and the flow field behind the shocks needs a very high resolution scheme. To resolve accurately the shock and the release waves behind the shock the piece­wise parabolic method (PPM) of Colella [1] was utilized in this research. A major problem which encountered in very high pressure problems is the equation of state which differs completely form the ideal-gas equation of state (EOS). Here, the original PPM is extended for real gas effect consideration.

  • PDF

Development of Standard Checklist for Safety Management of Toxic Gas facility in Domestic University Laboratory (국내 대학 실험실 독성가스 시설의 안전관리를 위한 표준 체크리스트 개발)

  • Lee, Sungjin;Kim, Byung-Duk;Ha, Dong-Myeong
    • Journal of the Korean Institute of Gas
    • /
    • v.19 no.6
    • /
    • pp.92-98
    • /
    • 2015
  • Toxic gases are managed by High Pressure Gas Safety Control Act. Toxic Gases are "31 designated species and each gas of which the permissible concentration($LC_{50}$) is equal to or less than 5000 ppm as defined in High Pressure Gas Safety Control Act.". Korean toxic gas usage in accordance with the growth of the electronic industry has increased explosively. The demand of toxic gas research in domestic university laboratories has grown together. But the research associated with toxic gas safety management in the domestic laboratory is nonexistent state. In this study, we identified weak points of toxic gas safety management through a survey of domestic university laboratory facilities. This paper presented toxic gas safety measures in order to overcome those weak points. Also this paper developed a standard checklist to improve and ensure safe management of toxic gas facility in accordance with the proposed measures. This research is to enforce safety management of toxic gas facilities in domestic university laboratory and it will provide safety guidelines for every laboratory.

A Development Inspection Management Operation Model of High Pressure Underground Pipeline in Industrial estate (산업단지 고압매설배관의 점검 관리 운영 모델 개발)

  • Choi, Ji-Hun;Kim, Jin-Jun;Rhie, Kwang-Won;Kim, Tae-Hun
    • Journal of the Korean Institute of Gas
    • /
    • v.23 no.1
    • /
    • pp.62-69
    • /
    • 2019
  • The high pressure underground pipelines of industrial states such as Ulsan, Yeosu consist with not only the pipelines for the utility support such as Raw material of petrochemical industry and steam, but also high pressure pipelines of toxic, flammable gas intricately like a web. Therefore, in this study, based on in-depth comparison analysis of industrial estate pipelines, and underground city gas pipelines' safety management status, excavation frequency, excavation depth, patrol period which are pipe damage impact factor by the other construction are analyzed. And, as a result, risk changes and correlations due to risk reduction strategy of the other construction are compared to be presented the safety inspection operation model for the high pressure underground pipelines of industrial estates.

An Experimental Study on Pressure-resistant Performance of a Re-fillable LPG Cylinder (LPG 재충전 소형 용기의 내압성능에 관한 실험적 연구)

  • Yim, Sang-Sik;Jang, Kap-Man;Lee, Jin-Han
    • Journal of the Korean Institute of Gas
    • /
    • v.18 no.2
    • /
    • pp.16-20
    • /
    • 2014
  • In this paper, the performance of pressure-resistance is validated by experiment on LPG re-fillable cylinder which has increased demands for spreading of camp culture. Propane has increased suppliable requirements as fuel because of easily vaporizing effect of low boiling point. However, propane can be occurring safety problems inevitably by high vapor pressure. So, the priority is that safe cylinder should furnish in order to be circulated as safe fuel. LPG re-fillable cylinder for high pressure is tried to furnish internationally, that is restricted by safe issues. For these reasons, the pressurization and rupture are performed by using pressurizing device that is operated by hydraulic system. Also, this paper will offer rupturable characteristics comparing with vapor pressure of propane. This paper is expected as basis research for developing re-fillable cylinder and using standard for supplying them.

Analysis of Check Valve Seal for CNG Vehicle Fuel Supply Line (CNG차량의 연료공급라인용 Check Valve Seal의 거동해석)

  • Yoo, Jae-Chan;Yeo, Kyeong-Mo;Kang, Byeong-Roo;Park, Tae-Jo
    • Tribology and Lubricants
    • /
    • v.22 no.6
    • /
    • pp.329-334
    • /
    • 2006
  • In CNG (Compressed natural gas) fuel supply line, whose main components are receptacle and check valve are used to charge high pressure gas to the tank of NGV (Natural gas vehicle). It is reported that the seal is separated occasionally form valve seat and results in blockage of gas flow. In this paper, MARC is used to investigate the reasons of seal separation and suggest design improvements. The static gas pressure distributions acting on the seal which calculated using FLUENT are considered to investigate accurate seal deformation behaviors. Deformed seal shapes are obtained for various amounts of seal interference and its location, gas pressure distributions and Young's modulus of the rubber used. The results showed that the reasons of seal separation problems are verified theoretically, and suggested examples of new design method. Therefore the present numerical methods can be applied in designing and performance analysis of rubber seals adopted in high pressure fluid machineries.

Rapid and massive throughput analysis of a constant volume high-pressure gas injection system

  • Ren, Xiaoli;Zhai, Jia;Wang, Jihong;Ren, Ge
    • Nuclear Engineering and Technology
    • /
    • v.51 no.3
    • /
    • pp.908-914
    • /
    • 2019
  • Fusion power shutdown system (FPSS) is a safety system to stop plasma in case of accidents or incidents. The gas injection system for the FPSS presented in this work is designed to research the flow development in a closed system. As the efficiency of the system is a crucial property, plenty of experiments are executed to get optimum parameters. In this system, the flow is driven by the pressure difference between a gas storage tank and a vacuum vessel with a source pressure. The idea is based on a constant volume system without extra source gases to guarantee rapid response and high throughput. Among them, valves and gas species are studied because their properties could influence the velocity of the fluid field. Then source pressures and volumes are emphasized to investigate the volume flow rate of the injection. The source pressure has a considerable effect on the injected volume. From the data, proper parameters are extracted to achieve the best performance of the FPSS. Finally, experimental results are used as a quantitative benchmark for simulations which can add our understanding of the inner gas flow in the pipeline. In generally, there is a good consistency and the obtained correlations will be applied in further study and design for the FPSS.

Breakdown Characteristics of $SF_6$ Gas under Non-Uniform Field (불평등 전계중의 $SF_6$가스 절연파괴특성)

  • Seo, Kil-Soo;Moon, In-Wook;Kim, Ik-Soo;Lee, Hyeong-Ho
    • Proceedings of the KIEE Conference
    • /
    • 1995.07c
    • /
    • pp.1326-1329
    • /
    • 1995
  • An influences of gap clearance, pressure and applied voltage shape on breakdown characteristics are investigated by using a rod-to-plane electrode in $SF_6$ gas. In case of D.C and A.C, a corona stabilization effect increases the breakdown voltage remarkably for lower pressure than 0.2MPa, whereas incase of negative D.C this effect exists independently of gas pressure. This suggests that an insulation optimization in a pratical apparatus is needed to prevent a corona appearance through the removal of local field enhancement.

  • PDF

A Study on the Reverse Cleaning Flow Characteristics for High Temperature and High Pressure Filtration (고온 고압 집진을 위한 역세정 유동장의 특성에 관한 연구)

  • 김장우;정진도;김은권
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.19 no.1
    • /
    • pp.25-31
    • /
    • 2003
  • Ceramic filter has been demonstrated as an attractive system to improve the thermal efficiency and to reduce the effluent pollutants. Removal of particulates from the hot gas stream is very important in air pollution control. In particular, the elimination of the particulate matters discharged from a gas turbine at high temperature can prevent the corrosion inside the IGCC. In this study, a Lab. scale test and numerical simulation were carried out to comprehend the relationship between pulse jet pressure and recovery of pressure drop and to characterize the reverse cleaning flow through a ceramic fil-ter element under high temperature and high pressure. When the pulse-jet pressures were 2, 3 and 4 kg/$ extrm{cm}^2$, the cleaning effect increase of about 10~30% by recovery of pressure drop caused by pulse pressure. Cleaning effect at 45$0^{\circ}C$ was greater than that at 55$0^{\circ}C$ or 650$^{\circ}$ for the same pulse pressure. According to the result of the present simulation, high pressure has been formed in terminal and central regions in our models and temperature distribution caused by pulse air is to be uniform comparatively on inner surface of filter.

A Study on the Safety Management of High Pressure Underground Pipeline in Industrial estate (산업단지 고압매설배관 안전관리 고찰)

  • Choi, Hyun-Woong;Chung, Se-Kwang;Kim, Jin-Jun
    • Journal of the Korean Institute of Gas
    • /
    • v.21 no.6
    • /
    • pp.30-38
    • /
    • 2017
  • Established in the 1960s, high pressure underground pipelines in Ulsan and Yeosu industrial estate are underground as toxic gas as well as combustible gas that is heavier than city gas and low combustion range. Especially, industrial pipelines occupy more than 20 years old pipes. In this way, the industrial estate pipeline was installed before the introduction of the supervision of construction, However, unlike the city gas pipeline, the pipeline is managed without any legal obligation. In this study, the safety management status of high pressure underground pipelines and urban gas underground pipelines in the industrial estate is analyzed and comparison of laws, extent of damage impact, using the pipe inspection model for pipe inspection of high pressure piping system with the existing piping system. it is intended to cuntribute to improving the safety of industrial estate are underground pipeline.

Numerical Analysis for Evaluation of Ejection Capacity Relationship of Safety Valves in Pressure Regulating Station(I) - Flow Analysis and Mass Flow Rate Verification of Pressure Regulator - (정압기지내의 안전밸브 분출용량 관계식 검증을 위한 유동해석(I) - 정압기 유동 해석 및 질량 유량 검증 -)

  • Gwon, Hyuk-Rok;Roh, Kyung-Chul;Kim, Young-Seop;Lee, Seong-Hyuk
    • Journal of the Korean Institute of Gas
    • /
    • v.12 no.2
    • /
    • pp.99-104
    • /
    • 2008
  • Gas pressure regulators in pressure regulating station reduce high-pressure gas in a process line to a lower. Gas pressure regulators are not flow control devices, they are used to control delivery pressure only. For the safety of pressure regulating station, it is essential to study flow regime and characteristics of a safety valves that is connected to a pressure regulator. For this, it is necessary to understand flow characteristics and the flow rate of upstream component part such as gas pressure regulators in regulating station. In the present study, numerical analysis of flow characteristics and the mass flow rate of a pressure regulator is conducted under the several inlet, outlet conditions and open rates. Then, the numerical result of the mass flow rate is verified with experimental equation from manufacture of pressure regulator. Consequently, the numerical result is comparatively good agreement with values from experimental equation.

  • PDF