• Title/Summary/Keyword: High pressure air jet

Search Result 106, Processing Time 0.033 seconds

A study on Geometry of Labyrinth Seal for High Speed Machining Center (고속주축용 라비린스 시일의 형상설계에 관한 연구)

  • 나병철;전경진;한동철
    • Tribology and Lubricants
    • /
    • v.13 no.3
    • /
    • pp.56-62
    • /
    • 1997
  • Sealing an oil-air mixture plays important roles to have an enhanced lubrication for high speed spindle. High speed spindles require non-contact type sealing mechanism. In this study, an optimum seal design to minimize leakage is concerned in the aspect of flow control. This paper categorizes geometries of mostly used non-contact type seals and analyzes each leakage characteristics to minimize a leakage on sealing area. Effect of minimum clearance and its position are considered according to variation of detail geometry. The estimation of non-leaking property is determined by amount of pressure drop in the leakage path assuming constant leakage flow. To simulate an oil jet or oil mist type high speed spindle lubrication, the working fluid is regarded as two phases that are mixed flow of oil phase and air phase. Both of the turbulence and the compressible flow model were introduced in CFD(Computational Fluid Dynamics) analysis. Design parameters has been induced to minimize leakage in limited space, and a methodological study on geometrical optimization has been conducted.

Fabrication of Micro Structure Using Photo Polymer Mask and Micro Abrasive Jet Machining (Photo Polymer 마스크와 미세입자분사가공을 이용한 미세구조물 제작)

  • Ko T.J.;Park D.J.;Lee I.H.;Kim H.S.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.1175-1178
    • /
    • 2005
  • Brittle materials, especially single-crystal silicon wafer, are widely used for sensors, IC industry, and MEMS applications. e general machining process of crack easy materials is by chemical agents, but it is hazardous and time consuming. Also, it is difficult to get high aspect ratio micro structure. As an alternative tool, an AJM(Abrasive jet machining) is promising method in terms of high aspect ratio and production cost. In this study, to get more precise detail compared to general AJM, photo polymer mask, SU-8, used in photolithography was applied in AJM. Process parameters such as abrasive diameter, air pressure, nozzle diameter, flow rate of abrasive in AJM and a variety of conditions in spin coating were decided. Finally, micro channel and mixer was fabricated to see the efficiency of the AJM with photo polymer mask.

  • PDF

Numerical and experimental study on the pressure dorp of axial-flow cyclone in the air handling unit (공기조화기 장착용 축상유입식 싸이클론의 압력손실에 대한 수치해석 및 실험적 연구)

  • Kwon, Soon-Bark;Park, Duck-Shin;Cho, Youngmin;Kim, Se-Young;Kim, Myeoung-Joon;Kim, Hojoong;Kim, Taesung
    • Particle and aerosol research
    • /
    • v.5 no.2
    • /
    • pp.37-43
    • /
    • 2009
  • Particulate matter (PM) is one of the major indoor air pollutants especially in the subway station in Korea. In order to remove PM in the subway station, several kinds of PM removal system such as roll-filter, auto-washable air filter, demister, and electrostatic precipitator are used in the air handling unit (AHU) of subway stations. However, those systems are prone to operation and maintenance problems since the filter-regeneration unit consisting of electrical or water jet parts might malfunction due to the high load of particulates unless the filter medium is periodically replaced. In this study, the use of axial-flow cyclone was proposed for particulate filter unit in the AHU for its low operation and maintenance cost. Novel shape of axial-flow cyclone was designed by using computational fluid dynamics (CFD). The shape of vortex vane was optimized in terms of pressure drop and tangential velocity. In addition, CFD analysis was validated experimentally through the pressure drop measurement of mock-up model. We found that pressure drop and tangential velocity of fluid through the axia-flow cyclone was significantly affected by the rotating degree of vortex vane and the numerical prediction of pressure drop agreed well with experimental measurement.

  • PDF

Cu Line Fabricated with Inkjet Printing Technology for Printed Circuit Board (잉크젯 인쇄 기술을 이용한 인쇄회로기판용 나노구리배선 개발)

  • Seo, Shang-Hoon;Lee, Ro-Woon;Yun, Kwan-Soo;Joung, Jae-Woo;Lee, Hee-Jo;Yook, Jong-Gwan
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.1806-1809
    • /
    • 2008
  • Study that form micro pattern by direct ink jet printing method is getting attention recently. Direct ink jet printing spout fine droplet including nano metal particle by force or air pressure. There is reason which ink jet printing method is profitable especially in a various micro-patterning technology. It can embody patterns directly without complex process such as mask manufacture or screen-printing for existent lithography. In this study, research of a technology that ejects fine droplet form of Pico liter and forms metal micro pattern was carried with inkjet head of piezoelectricity drive system. Droplet established pattern while ejecting consecutively and move on the surface at the fixed speed. Patterns formed in ink are mixed with organic solvent and polymer that act as binder. So added thermal hardening process after evaporate organic solvent at isothermal after printing. I executed high frequency special quality estimation of CPW transmission line to confirm electrical property of manufactured circuit board. We tried a large area printing to confirm application possibility of an ink jet technology.

  • PDF

Macroscopic Breakup Characteristics of Water Gel Simulants with Triplet Impinging Spray Jet (젤 모사 추진제 삼중 충돌 분사 제트의 거시적 분열 특성 연구)

  • Hwang, Tae-Jin;Lee, In-Chul;Koo, Ja-Ye
    • Journal of ILASS-Korea
    • /
    • v.15 no.3
    • /
    • pp.109-114
    • /
    • 2010
  • The implementation of gelled propellants systems offers high performance, energy management of liquid propulsion, storability, and high density impulse of solid propulsion. The present study focused on the macroscopic spray characteristics of liquid sheets formed by triplet impinging jets of non-Newtonian liquids which are mixed by Carbopol 941 0.5%wt. The results are compared to experiments conducted on spray images which formed by triplet impinging jets concerning with airassist effect at center orifice. When gel propellants are injected by doublet impinging jets at low pressure and high pressure, closed rim pattern shape appeared by polymeric effect from molecular force and showed inactive atomization characteristics, because of extensional viscosity related by restriction of atomization process and breakup time delay of turbulence transition. As increasing mass flow rate of the air(increasing GAR), spray breakup level is also increased.

A Study on Slamming Impact Pressure (슬래밍 충격 압력에 대한 연구)

  • Park, Jun-Soo;Oh, Seung-Hoon;Kwon, Sun-Hong;Chung, Jang-Young
    • Journal of Ocean Engineering and Technology
    • /
    • v.23 no.1
    • /
    • pp.67-73
    • /
    • 2009
  • This study presents the results of a slamming experiment using a pneumatic cylinder. The employment of the pneumatic cylinder showed a relatively good repeatability when the results were compared with those of other slamming devices. The experiment was done for various incident angles. An air pocket was believed to cause a reduction in the magnitude of the impact pressure with an incident angle of $0^{\circ}$ for the water entry. A high speed camera was used in an attempt to locate the time of the contact between the bottom of the specimen and the free surface. It seemed that the maximum pressure occurred before the water contacted the bottom of the specimen.

A Study on Flow Characterstics of Gas Turbine rvpe Combustor (II) - Flow Characteristics in Combustor - (가스터어빈형 연속류연소기의 유동에 관한 연구(II) -연소기내의 유동특성-)

  • 이근오;지용욱;김형섭
    • Journal of the Korean Society of Safety
    • /
    • v.4 no.1
    • /
    • pp.59-70
    • /
    • 1989
  • This paper deals with the experimental study on the flow characteristics in straight flow can type combustor which has been used for high pressure ratio gas turbine combustor. The author has investigated the effects of swirl number and secondary air hole arrays in axial position on the flow characteristics by adopting the tuft method and 5-Hole Pilot Tube. From these experiments, as the swirl number increases, the results obtained is that the area of recirculation zone becomes wide and the position of vortex-core region approaches to the near of fuel nozzle in the model combustor. The most favourable penetration is obtained when secondary air jet is introduced through the air holes distributed in the form of paralled two rows in axial position of model combustor.

  • PDF

A NUMERICAL STUDY ON THE COATING THICKNESS IN CONTINUOUS HOT-DIP GALVANIZING (연속 아연 도금 두께에 관한 수치 해석적 연구)

  • Lee, Dong-Won;Shin, Seung-Young;Cho, Tae-Seok;Kwon, Young-Doo;Kwon, Soon-Bum
    • Journal of computational fluids engineering
    • /
    • v.14 no.1
    • /
    • pp.1-8
    • /
    • 2009
  • To control the coating thickness of zinc in the process of continuous hot-dip galvanizing, it is known from early days that the gas wiping through an air knife system is the most effective because of the obtainable of uniformity of coating thickness, possibility of thin coating, working ability in high speed and simplicity of control. But, the gas wiping using in the galvanizing process brings about a problem of splashing from the strip edge for a certain high speed of coating. Also, it is known that the problem of splashing directly depends upon the galvanizing speed and nozzle stagnation pressure. In theses connections, in the present study, we proposed two kinds of air knife systems having the same expansion rate of nozzle, and the jet structures and coating thicknesses from a conventional and new proposed nozzles are compared. In numerical analysis, the governing equations consisted of two-dimensional time dependent Navier-Stokes equations, standard k-e turbulence model to solve turbulence stress and so on are employed. As a result, it is found that it had better to use the constant rate nozzle from the point view of the energy saving to obtain the same coating thickness. Also, to enhance the cutting ability at the strip, it is advisable to use an air knife with the constant expansion rate nozzle.

Development of the Air-lifting & Suction-pumping System to Remove the Noxious Deposit in the Underwater (수중 유해성 유기퇴적물의 수거를 위한 Air-lifting & Suction-pumping System 개발)

  • Kim, Seoung-Gun;Song, Do-Sung;Kang, Mun-Kyu;Lee, Sang-Moo;Choi, Young-Chan;Ko, Yu-Bong
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2002.10a
    • /
    • pp.251-255
    • /
    • 2002
  • Eutrophic matters accumulated on the bottom of sea, river and lake cause red tide phenomenon in ocean and outbreak green algae in river and lake. Systems are developed to remove the noxious deposit. But the existing systems remove not only the eutrophic matters but also natural materials, sand, pebbles etc. that should remain at the bottom. This paper describes a new system that can safely, and economically take away the noxious deposit in underwater. High pressure water jet is used to induce vortices in the triangular suction section, and air-lifting pump to lift up the deposit. The mixture of the water and deposit is filtered through the drum filters. An under camera shows the under water situation along the moving direction of the system that is controlled by a remote operator. This remote controlled moving system obliterate the necessity of the diver that usually costs high. The experimental results show the effectiveness of the suggested system.

  • PDF

Development of a Ventilating Waterjet Propulsor for Super-High Speed Ships (초고속선을 위한 공기유입 물제트 추진기 개발)

  • J.T. Lee;I.S. Moon;Y.H. Park;K.Y. Kim;K.S. Kim
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.36 no.3
    • /
    • pp.41-49
    • /
    • 1999
  • A feasibility study is performed for practical application of a Ventilating Water-Jet(VWJ) propulsor which attracts new attention as a candidate propulsor for super-high speed vessels. Super-cavitating foil sections are adopted for the rotor blades since the rotor is operating at ventilating condition. Wedge type and cavitator type foil sections are used for the design of rotor blades. Other geometric characteristics of rotors are selected from the Kaplan type ducted propeller rotors. The test section of KRISO cavitation tunnel is modified to perform open-water tests of the VWJ propulsors. The tests are performed both at fully-submerged and free-jet conditions. Ventilation occurred at the free-jet condition by sucking the air in the downstream side of the rotor, which easily develops as super-cavitation when the rotor operates at lower advance coefficients. Spoilers are attached at the trailing end of the pressure side of the blade section, in order to increase the lift force.

  • PDF