• Title/Summary/Keyword: High performance engine

Search Result 1,057, Processing Time 0.03 seconds

The Effect of Lubricant Containing Copper Alloy Nano-powder on Shafting Stability and Torque of a Diesel Engine (구리합금 나노분말을 혼합한 윤활제가 디젤기관의 축계안정성 및 토크에 미치는 영향)

  • Park, Kweon-Ha;Kim, Young-Nam;Kim, Young-Il
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.32 no.4
    • /
    • pp.514-521
    • /
    • 2008
  • Many research works for improving a boundary lubrication performance have been executed by using solid lubricants, and been tried to apply an engine lubrication. However those general lubricants have not been applied on engines due to the extreme conditions such as very high temperature and pressure during combustion process in a cylinder. In this study a lubricant containing copper alloy nano-powder is applied on a diesel engine driven by an electric motor. Torques and shaft vibrations are measured, then an engine friction loss and rotating stability are assessed. The results show that the frequency of the vibration is about the same as that of a general lubricant, but the amplitudes in the both X and Y direction are reduced as well as the friction loss is reduced.

Implementation of Monitoring and Control System for Fire Engine Pump using the AJAX (AJAX를 이용한 소방엔진펌프의 모니터링과 제어 시스템 구현)

  • Yang, Oh;Lee, Heon-Guk
    • Journal of the Semiconductor & Display Technology
    • /
    • v.15 no.3
    • /
    • pp.40-45
    • /
    • 2016
  • In this paper, the fire engine pump is controlled and monitored by the AJAX (Asynchronous Javascript and Xml) in the web server. The embedded system with built-in system having a processor and a memory of high performance occurs many problems in transmitting the large amount of data in real time through the web server. The AJAX is different from HTML (Hyper Text Makeup Language) with java script technology and can make RIA (Rich Internet Application). It process the necessary data by using asynchronous and it take advantage of usefulness, accessibility, a fast response time. Using AJAX can build up web server with real time and monitoring that fire engine pump status, check processing pump memory in the event of fire, also remotely monitors can do. The web server system can control the fire engine pump as like the black box. The experimental results show the effectiveness and commercialize possibility.

Thermohydrodynamic Lubrication Analysis of Journal Bearing on Steam Turbine Shipping Engine Involving the Mixture of Water within Turbine Oil (터빈오일과 물이 혼합될 때 증기터빈 선박엔진 저어널 베어링의 열유체윤활 해석)

  • Chun, Sang-Myung
    • Tribology and Lubricants
    • /
    • v.27 no.2
    • /
    • pp.77-87
    • /
    • 2011
  • In this study, using the governing equation for thermohydrodyamic lubrication involving the homogeneous mixture of incompressible fluid derived by based on the principle of continuum mechanics, it is discussed the effects of water within turbine oil on the performance of high speed journal bearing of a steam turbine shipping engine. The governing equation is the general equation being able to be applied on the mixture of Newtonian fluid and non-Newtonian fluid. Here, the fluid viscosity index, n of power-law non-Newtonian fluid is supposed to be 1 for the application of the journal bearing in a steam turbine shipping engine lubricated with the mixture of two Newtonian fluid, for example, water within turbine oil. The results related with the bearing performance are showed.

Study on the Thermal Behavior of Immersion Cooled LED Lighting Engines (담금 냉각되는 LED 조명엔진의 열특성에 대한 연구)

  • Kim, Kyoung Joon
    • Journal of Power System Engineering
    • /
    • v.18 no.3
    • /
    • pp.87-92
    • /
    • 2014
  • This study is aimed at investigating the thermal behavior of immersion-cooled high power LED lighting engines. 3D CFD models have been generated for the numerical analysis. Five cases in terms of the configuration of LED chips have been explored for various passive cooling conditions of the lighting engine, i.e., the natural air convection with a lens, the natural air convection without a lens, the deionized water-immersion cooling condition with a lens. The numerical study reveals that the deionized water-immersion cooled lighting engine has nearly twice better thermal performance than the natural air convection cooled lighting engine containing a lens. The investigation has also demonstrated that the four chips configuration has the better thermal performance than the single chip configuration.

Optimal Design Strategy on Balance Shaft (밸런스 샤프트 설계를 위한 최적화 설계기법 연구)

  • Kim, Chan-Jung;Bae, Chul-Yong;Lee, Bong-Hyun;Kwon, Seong-Jin;Na, Byung-Chul
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.314-319
    • /
    • 2006
  • Main focus on balance shaft module is to reduce the vibration triggered from engine block and compensate it from unbalance mass in balance shaft. Since the performance of balance shaft module is controlled by rotor shape including unbalance mass, a design strategy on rotor is key issue on determine the quality of balance shaft system. Even the design result on balance shaft mostly affect the lay-out of housing and other related components, its issue on balance shaft should be considered in advance throughout the total design procedure. In this paper, optimal design strategy focused on balance shaft is presented to make a design process efficiently with ensuring its high performance. And its method is verified with field design process of balance shaft in commonly adapted vehicle with 3-cylinder and 4-cylinder engine.

  • PDF

A study on the prediction of performance and emission of a 4-cylinder 4-cycle gasoline engine with methanol fuel (메탄올 연료를 사용한 4실린더 4사이클 가솔린기관의 성능 및 배출물 예측에 관한 연구)

  • 조진호;김형섭
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.10 no.4
    • /
    • pp.75-84
    • /
    • 1988
  • The performance and emission for the 4-cylinder 4-cycle gasoline engine fueled with methanol is predicted in this paper. The model for all the processes is illustrated. It computes the gas pressure, gas temperature and the rate of formation of nitric oxide and carbon monoxide at each crank angle using basic energy equation and reaction kinetic mechanism. The results are obtained at different operating conditions encompassing changes in fuel-air equivalence ratio, engine speed, spark timing and compression ratio. The special characteristics of methanol such as high power output and nitric oxide emissions have been truthfully predicted by the model.

  • PDF

A Concept and Energy performance of a Gravity Engine for Tidal and Hydro-Power (조수 및 소수력 발전을 위한 회수를 위한 중력엔진의 개념 및 에너지 정산)

  • Lee, Jae-Young
    • Proceedings of the Korea Society for Energy Engineering kosee Conference
    • /
    • 1999.11a
    • /
    • pp.231-236
    • /
    • 1999
  • This paper is to propose a concept and performance of the gravity engine which could extract energy from sea or river as a clean and renewable and sustainable power, the tidal or hydro-power. The vertical motion of the buoyancy cylinder of the present gravity engine is converted to the mechanical work directly without any hydraulic loss. The increased gravity potential during high tide is harnessed proportional to the length of the buoyancy cylinder times tidal height which is greater than the conventional tidal power using water mill. This energy amplification results from the net energy gain between the resource energy and the imposed energy to extract water out of the buoyancy cylinder. Its efficiency is higher than the conventional water mill due to its direct mechanical conversion.

  • PDF

Prestudy on Expendable Turbine Engine for High-Speed Vehicle (초고속 비행체용 소모성 터빈엔진 사전연구)

  • Kim, You-Il;Hwang, Ki-Young
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.11a
    • /
    • pp.629-634
    • /
    • 2011
  • A prestudy on expendable turbine engine for high-speed vehicle was conducted. The two possible mission profiles were established to decide the engine requirements and Design Point, and Design Point analysis was performed with the values of design parameter which were obtained from similar class engines and technical references. The results showed that Specific Net Thrust is 2599.4 ft/s and Specific Fuel Consumption is 1.483 lb/($lb^*h$) at the flight condition of Sea Level, Mach 1.2. It was also found through the performance analysis on the two possible mission profiles that major design parameters for determining Net Thrust were Turbine Inlet Temperature for low supersonic flight speed and Compressor Exit Temperature for high supersonic flight speed. In addition, simple turbojet engine with axial compressor, straight annular combustor, axial turbine and fixed throat area converge-diverge exhaust nozzle was proposed as the configuration of simple low cost light engine.

  • PDF

Prestudy on Expendable Turbine Engine for High-Speed Vehicle (초고속 비행체용 소모성 터빈엔진 사전연구)

  • Kim, YouIl;Hwang, KiYoung
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.17 no.1
    • /
    • pp.97-102
    • /
    • 2013
  • A prestudy on expendable turbine engine for high-speed vehicle was conducted. After two possible mission profiles were established to decide the engine requirements, design point analysis was performed with the values of design parameter which were obtained from similar class engines, references, etc. The results showed that specific net thrust and specific fuel consumption with turbine inlet temperature of 3,600 R are 2,599.4 ft/s and 1.483 lb/(lb*h) respectively at the flight condition of sea level, Mach 1.2. It was also found that major design parameters for determining maximum net thrust were turbine inlet temperature for low supersonic and transonic flight speed and compressor exit temperature for high supersonic flight speed from the results of performance analysis on the two possible mission profiles. In addition, simple turbojet engine with an axial compressor, a straight annular combustor, an one stage axial turbine and a fixed throat area converge-diverge exhaust nozzle was proposed as the configuration of simple low cost lightweight turbine engine.

Performance Analysis of High Efficiency Co-generation System Using the Experimental Design Method (실험계획법을 이용한 고효율 소형 열병합 시스템 성능 해석)

  • Ryu, Mi-Ra;Lee, Jun-Sik;Park, Jeong-Ho;Lee, Seong-Beom;Lee, Dae-Hee
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.20 no.3
    • /
    • pp.20-25
    • /
    • 2012
  • As a kind of distributed energy system, the co-generation system based Diesel engine using after-treatment device was devised for its environmental friendly and economic qualities. It is utilized in that the electric power is produced by the generator connected to the Diesel engine, and waste heat is recovered from both the exhaust gases and the engine itself by the finned tube and shell & tube heat exchangers. An after-treatment device composed ceramic heater and DOC(Diesel Oxidation Catalyst) is installed at the engine outlet in order to completely reignite the unburned fuel from the Diesel engine. In this study, mutual relation of each experimental condition was derived through minimum number of experiment using Taguchi Design and ANOVA recently used in the various fields. It is found that the total efficiency (thermal efficiency plus electric power generation efficiency) of this system reaches maximum 94.4% which is approximately higher than that of the typical diesel engine exhaust heat recovery system.